Skip to main content
Log in

Lattice-Dynamical, Elastic and Thermo-Dynamical Properties of GaAs, InAs, and their Mixed Ga1-xInxAs Alloys

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A computational study on the lattice dynamical, elastic, and thermodynamical properties of GaAs, InAs, and their ternary mixed alloys (Ga1-xInxAs) in the zinc-blende structural phase is presented. This study is performed by employing an extended three-body shell model (TBSM) accompanied by adjustable parameters. Our calculated results for the elastic properties show that Ga1-xInxAs alloys are mechanically stable for all the studied compositions. The alloy Ga1-xInxAs at x = 0.38 and the binary compound GaAs are found to be brittle but the InAs compound is found to be ductile in nature. Moreover, it is also noted that elastic constants, C11 and C44 , decreased with increasing indium (In) concentration but C12 is increased. Overall, our calculated results are in excellent agreement with the available theoretical results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Guler and M. Guler, Mat. Res. 17, 1268 (2014).

    Article  Google Scholar 

  2. R. Banerjee and Y.P. Varshni, Can. J. Phys. 47, 451 (1969).

    Article  CAS  Google Scholar 

  3. J.F. Vetelino and S.S. Mitra, Solid State Commun. 7, 118 (1969).

    Google Scholar 

  4. H. Kaplan and J.J. Sullivan, Phys. Rev. 130, 120 (1969).

    Article  Google Scholar 

  5. K. Kunc, M. Balkanski and M.A. Nusimovici, Proc. X Int. Conf. Phys. Semicond, ed. By S.P. Keller (Cambridge, USA, 1970), p. 119

  6. W. Cochran, S.J. Fray, F.A. Johnson, J.E. Quarrington and N. Williams, J. Appl. Phys Suppl. 32, 2102 (1967).

    Article  Google Scholar 

  7. K. Kunc and M. Balkanski, Phys. Status Solidi (b) 71, 341 (1975).

    Article  CAS  Google Scholar 

  8. E.N. Korol, Sov. Phys. Solid State 12, 497 (1970).

    Google Scholar 

  9. L.A. Feldkamp, Phys. Chem. Solids 33, 711 (1972).

    Article  CAS  Google Scholar 

  10. G. Dalling and J.L.T. Waugh, In Lattice Dynamics, of, (R.F. Wallis: Pergamon Press (London), 1965), p. 19.

    Book  Google Scholar 

  11. G. Dalling et al., Phys. Rev. 132, 2410 (1963).

    Article  Google Scholar 

  12. G.W. Garland and K.C. Park Jr., J. Appl. Phys. 33, 759 (1962).

    Article  CAS  Google Scholar 

  13. E. Guler, M. Guler, E. Aldirmaz and M. Kara, J. Engg. Fundam. 3, 9 (2016).

    Article  Google Scholar 

  14. P. Han and G. Bester, Phy. Rev. B. 83, 174304 (2011).

    Article  CAS  Google Scholar 

  15. D.N. Talwar and B.K. Agrawal, Phys. Rev. 138, 693 (1973).

    Article  Google Scholar 

  16. P.H. Borcherds and K. Kunc, Phys. C 11, 4145 (1978).

    Article  CAS  Google Scholar 

  17. R. Carles, N. SaitCrieq, J.B. Renucci, M.A. Renucci and A. Zwick, Phys. Rev. B 22, 4804 (1980).

    Article  CAS  Google Scholar 

  18. K. Kunc, Ann. Phys. 8, 319 (1973).

    Article  CAS  Google Scholar 

  19. D. Bimberg, N. Kirstaedter, N.N. Ledentsov, Zh.I. Alferov, P.S. Kop’ev and V.M. Ustinov, InGaAs-GaAs quantum-dot lasers. IEEE J. Select. Topics Quantum Electron. 3, 196 (1997).

    Article  CAS  Google Scholar 

  20. K. Alavi, H. Temkin, A.Y. Cho and T.P. Pearsall, Appl. Phys. Lett. 4244, 845 (1983).

    Google Scholar 

  21. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson and A.Y. Cho, Science 264, 553 (1994).

    Article  CAS  Google Scholar 

  22. J.L. Veteran, Thin Solid Films 97, 187 (1982).

    Article  CAS  Google Scholar 

  23. P.S. Branicio, R.K. Kalia, A. Nakano, J.P. Rino, F. Shimojo and P. Vashishta, Phys. Rev B 82, 1057 (2003).

    CAS  Google Scholar 

  24. I. Ebbsjo, R.K. Kalia, A. Nakano, J.P. Rino and P. Vashishta, J. Appl. Phys. 87, 7708 (2000).

    Article  CAS  Google Scholar 

  25. A.K. Kushwaha, Phys. Lett. A 372, 6145 (2008).

    Article  CAS  Google Scholar 

  26. A.D.B. Woods, W. Cochran and B.N. Brockhouse, Phys. Rev. 119, 980 (1960).

    Article  CAS  Google Scholar 

  27. R.A. Cowley, W. Cochran, B.N. Brockhouse and A.D.B. Woods, Phys. Rev. 131, 1030 (1963).

    Article  CAS  Google Scholar 

  28. B.C. Clark, D.C. Gazis and R.F. Wallis, Phys. Rev. A 134, 1486 (1964).

    Article  Google Scholar 

  29. E.W. Kellermann, Phil. Trans. R. Soc. A 238, 513 (1940).

    Google Scholar 

  30. M. Blackman, Proc. R. Soc. A159, 416 (1937).

    Google Scholar 

  31. A.K. Kushwaha, Physica B 405, 1638 (2010).

    Article  CAS  Google Scholar 

  32. L. Vegards, Skr. Nor. Vidensk. Akad. Oslo. 12, 33 (1947).

    Google Scholar 

  33. H.M. Kagaya and T. Soma, Phys. Status Solidi b 124, 37 (1984).

    Article  CAS  Google Scholar 

  34. C. Patel, T.J. Parker, H. Hamishidi and W.F. Sherman, Phys. Status Solidi b 22, 461 (1984).

    Article  Google Scholar 

  35. M.S. Kushwaha, Chem. Phys. 81, 2028 (1984).

    CAS  Google Scholar 

  36. M.H. Brodsky and G. Lucovsky, Phys. Rev. Lett. 21, 990 (1968).

    Article  CAS  Google Scholar 

  37. G. Lucovsky and M.F. Chen, Solid State Commun. 8, 1397 (1970).

    Article  CAS  Google Scholar 

  38. S. Yamazaki, A. Ushirokawa and T. Katoda, J. Appl. Phys. 51, 3722 (1980).

    Article  CAS  Google Scholar 

  39. P. Kleinert, Phys. Status solidi b 114, 459 (1982).

    Article  CAS  Google Scholar 

  40. Z. Piesbergen, Naturforsch A 18, 147 (1963).

    Google Scholar 

  41. A.K. Kushwaha, Int. J. Thermophys. 38, 98 (2017).

    Article  CAS  Google Scholar 

  42. M.H. Born, Dynamical Theory of Crystal Lattices, Oxford University, 1988.

  43. J. Qi, J.A. Yan, H. Park, A. Steigerwald, Y. Xu, S.N. Gilbert, X. Liu, J.K. Furdyna, S.T. Pantelides and N. Tolk, Phys. Rev. B 81, 115208 (2010).

    Article  CAS  Google Scholar 

  44. Landolt-B¨ornstein, Semiconductors, Group IV Elements, IV-IV and III-V Compounds, NeueSerie III/41a1a (Springer, 2001).

  45. L. Pedesseau, J. Even, A. Bondi, W. Guo, S. Richard, H. Folliot, C. Labbe, C. Cornet, O. Dehaese, A.L. Corre, O. Durand and S. Loualiche, J. Phys. D 41, 165505 (2008).

    Article  CAS  Google Scholar 

  46. F. Grosse and R. Zimmermann, Phys. Rev. B 75, 235320 (2007).

    Article  CAS  Google Scholar 

  47. S.I. Rangnathan and M.O. Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  CAS  Google Scholar 

  48. S.F. Pugh, Philo. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  49. A.K. Kushwaha, Comput. Mater. Sci. 69, 505 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Bin-Omran acknowledges Researchers Supporting Project number (RSP-2021/82), King Saud University, Riyadh, Saudi Arabia. The author (Bakhtiar Ul Haq) extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding his work through Research Groups Program under Grant No. R.G.P. 2/186/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kushwaha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, A.K., Mishra, S.P., Chauhan, S. et al. Lattice-Dynamical, Elastic and Thermo-Dynamical Properties of GaAs, InAs, and their Mixed Ga1-xInxAs Alloys. J. Electron. Mater. 51, 3033–3041 (2022). https://doi.org/10.1007/s11664-022-09524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09524-8

Keywords

Navigation