Skip to main content
Log in

Facile and Efficient Negative Permittivity Realization of Copper Microwire Polymer Metacomposites at X-Band Frequency

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Negative permittivity is a unique and fascinating property which is essential for applications such as for a perfect lens and 100% electromagnetic wave absorption. Both positive and negative real permittivity are effectively modulated by commercially available low-cost copper microwire epoxy metacomposites. The influence of diameter and length of the copper wire and weight percentage in the polymer composite on the dielectric properties are investigated. Relative real permittivity of 3–240 was obtained in X-band frequency (8.2–12.4 GHz) by controlling the composition of the composites. Ultraweak relative negative permittivity of -5-0 is present for samples of Cu-2mm-70 wt.%/epoxy (EP) or Cu-5mm-50 wt.%/EP composites owing to the low-frequency plasmonic state of free electrons in the percolated networks. The as-prepared Cu/EP composites are promising for microwave manipulating metamaterials and related high-frequency devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Zhang, W. Jiang, H. Jiang, Q. Wang, H. Tian, L. Bai, Z. Luo, S. Sun, Y. Luo, C. Qiu, and T. Cui, An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 3, 165 (2020).

    Article  Google Scholar 

  2. Z. Wang, K. Sun, P. Xie, Q. Hou, Y. Liu, Q. Gu, and R. Fan, Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta. Mater. 185, 412 (2020).

    Article  CAS  Google Scholar 

  3. D. Smith, J. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000).

    Article  CAS  Google Scholar 

  4. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006).

    Article  CAS  Google Scholar 

  5. S. Jahani, and Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23 (2016).

    Article  CAS  Google Scholar 

  6. Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, and L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Mater. 24, 2349 (2012).

    Article  CAS  Google Scholar 

  7. Z. Shi, R. Fan, K. Yan, K. Sun, M. Zhang, C. Wang, X. Liu, and X. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Funct. Mater. 23, 4123 (2013).

    Article  CAS  Google Scholar 

  8. X. Liu, Z. Ren, T. Yang, Y. Hao, Q. Wang, and J. Zhou, Tunable dielectric metamaterial based on strontium titanate artificial atoms. Scr. Mater. 184, 30 (2020).

    Article  CAS  Google Scholar 

  9. H. Moser, B. Casse, O. Wilhelmi, and B. Saw, Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metamaterial. Phys. Rev. Lett. 94, 063901 (2005).

    Article  CAS  Google Scholar 

  10. P. Cheben, R. Halir, J. Schmid, H. Atwater, and D. Smith, Subwavelength integrated photonics. Nature 560, 565 (2018).

    Article  CAS  Google Scholar 

  11. M. Kadic, G. Milton, M. van Hecke, and M. Wegener, 3D metamaterials. Nat. Rev. Phys. 1, 198 (2019).

    Article  Google Scholar 

  12. S. Venkatesh, Metamaterials and their applications in imaging, The University of Utah, 2017.

  13. D. Estevez, F. Qin, Y. Luo, L. Quan, Y. Mai, L. Panina, and H. Peng, Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos. Sci. Tech. 171, 206 (2019).

    Article  CAS  Google Scholar 

  14. C. Cheng, Y. Jiang, X. Sun, J. Shen, T. Wang, G. Fan, and R. Fan, Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Compos. A. Appl. Sci. Manuf. 130, 105753 (2020).

    Article  CAS  Google Scholar 

  15. L. Sun, Z. Shi, B. He, H. Wang, S. Liu, M. Huang, J. Shi, D. Dastan, and H. Wang, Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 1, 2100280 (2021).

    Article  Google Scholar 

  16. Q. Jiang, C. Xiang, Y. Luo, L. Wu, Q. Zhang, S. Zhao, F. Qin, and J. Lin, Textile structured metacomposites with tailorable negative permittivity under X and Ku band. Mater. Des. 185, 108270 (2020).

    Article  Google Scholar 

  17. P. Xie, W. Sun, A. Du, Q. Hou, G. Wu, and R. Fan, Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv. Electron. Mater. 7, 2000877 (2021).

    Article  CAS  Google Scholar 

  18. Z. Shi, R. Fan, Z. Zhang, H. Gong, J. Ouyang, Y. Bai, X. Zhang, and L. Yin, Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 032903 (2011).

    Article  Google Scholar 

  19. Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, X. Liu, X. Wang, and S. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79 (2013).

    Article  CAS  Google Scholar 

  20. C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun, and M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96, 678 (2016).

    Article  CAS  Google Scholar 

  21. P. Xie, Z. Zhang, Z. Wang, K. Sun, and R. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 1, 1021368 (2019).

    Google Scholar 

  22. K. Sun, J. Xin, Y. Li, Z. Wang, Q. Hou, X. Li, X. Wu, R. Fan, and K. Choy, Negative permittivity derived from inductive characteristic in the percolating Cu/EP metacomposites. J. Mater. Sci. Technol. 35, 2463 (2019).

    Article  CAS  Google Scholar 

  23. Y. Qu, J. Lin, J. Wu, Z. Wang, K. Sun, M. Chen, B. Dong, Z. Guo, and R. Fan, Graphene–carbon black/CaCu3Ti4O12 ternary metacomposites toward a tunable and weakly ε-negative property at the radio-frequency region. J. Phys. Chem. C. 124, 23361 (2020).

    Article  CAS  Google Scholar 

  24. G. Fan, Y. Zhao, J. Xin, Z. Zhang, P. Xie, and C. Cheng, Negative permittivity in titanium nitride-alumina composite for functionalized structural ceramics. J. Am. Ceram. Soc. 103, 403 (2019).

    Article  Google Scholar 

  25. G. Fan, Z. Wang, K. Sun, Y. Liu, and R. Fan, Doping-dependent negative dielectric permittivity realized in mono-phase antimony tin oxide ceramics. J. Mater. Chem. C. 8, 11610 (2020).

    Article  CAS  Google Scholar 

  26. Z. Wang, K. Sun, P. Xie, R. Fan, Y. Liu, Q. Gu, and J. Wang, Low-loss and temperature-stable negative permittivity in La0.5Sr0.5MnO3 ceramics. J. Eur. Ceram. Soc. 40, 1917 (2020).

    Article  CAS  Google Scholar 

  27. Y. Qu, Y. Du, G. Fan, J. Xin, Y. Liu, P. Xie, S. You, Z. Zhang, K. Sun, and R. Fan, Low-temperature sintering Graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J. Alloy. Compd. 771, 699 (2019).

    Article  CAS  Google Scholar 

  28. Y. Qu, Y. Wu, G. Fan, P. Xie, Y. Liu, Z. Zhang, J. Xin, and Q. Jiang, Tunable radio-frequency negative permittivity of Carbon/CaCu3Ti4O12 metacomposites. J. Alloy. Compd. 834, 1564 (2020).

    Article  Google Scholar 

  29. K. Deepa, M. Sebastian, and J. James, Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Appl. Phys. Lett. 91, 202904 (2007).

    Article  Google Scholar 

  30. K. Deepa, S. Nisha, P. Parameswaran, M. Sebastian, and J. James, Effect of conductivity of filler on the percolation threshold of composites. Appl. Phys. Lett. 94, 142902 (2009).

    Article  Google Scholar 

  31. S. George, J. James, and M. Sebastian, Giant permittivity of a bismuth zinc niobite-silver composite. J. Am. Ceram. Soc. 90, 3522 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China [51871146, 51803119]; National Key Research and Development Program of China [2021YFE0100500]; Zhejiang Natural Science Foundation [LR20E010001]; Zhejiang Key Research and Development Program [2021C01004]; Chao Kuang Piu High Tech Development Fund [2020ZL012]; Fundamental Research Funds for the Central Universities [2020XZZX002-10]; Aeronautical Science Foundation [2019ZF076002]; China Postdoctoral Science Foundation [2021M692756].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licheng Ju or Runhua Fan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, L., He, Q., Qin, F. et al. Facile and Efficient Negative Permittivity Realization of Copper Microwire Polymer Metacomposites at X-Band Frequency. J. Electron. Mater. 51, 2107–2113 (2022). https://doi.org/10.1007/s11664-022-09483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09483-0

Keywords

Navigation