Skip to main content
Log in

Na Adsorption on Para Boron-Doped AGNR for Sodium-Ion Batteries (SIBs): A First Principles Analysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The synthesis of para boron-doped armchair graphene nanoribbons (AGNR) motivated us to explore the adsorption behaviors of sodium (Na) atoms on boron-doped AGNR. This work investigates the adsorption, open circuit voltage, and storage capacity of Na on para boron (B)-doped AGNR. When the B is doped with AGNR, it greatly reduces the band gap as compared to AGNR of the same width. In contrast to AGNR, Na shows strong binding to the para boron-doped AGNR which indicates stronger interaction between sodium and carbon (Na-C) due to the para doping effect. Our calculations show that the maximum storage capacity of Na on para boron-doped AGNR is 833 mAhg\(^{-1}\), which is 16 times more than the storage capacity of Na on AGNR of the same size. The reported findings confirm that only 4.8% doping concentration of B atoms improves the adsorption and storage capacity of Na, laying the theoretical groundwork for future study on the para boron-doped AGNR and other structures for Na storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.H. Yao, M.S. Cao, H.J. Yang, X.J. Liu, X.Y. Fang, J. Yuan, Adsorption of Na on intrinsic, B-doped, N-doped and vacancy graphenes: a first-principles study. Comput. Mater. Sci. 85, 179–185 (2014)

    Article  CAS  Google Scholar 

  2. D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015)

    Article  CAS  Google Scholar 

  3. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012)

    Article  CAS  Google Scholar 

  4. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)

    Article  CAS  Google Scholar 

  5. S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions \(vs.\) Li ions. Energy Environ. Sci. 6, 2067–2081 (2013)

    Article  CAS  Google Scholar 

  6. R. Asher, S. Wilson, Lamellar compound of sodium with graphite. Nature 181, 409–410 (1958)

    Article  CAS  Google Scholar 

  7. P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018)

    Article  CAS  Google Scholar 

  8. M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162–178 (2016)

    Article  CAS  Google Scholar 

  9. X. Zhou, X. Zhu, X. Liu, Y. Xu, Y. Liu, Z. Dai, J. Bao, Ultralong cycle life sodium-ion battery anodes using a Graphene-templated carbon hybrid. J. Phys. Chem. C 118, 22426–22431 (2014)

    Article  CAS  Google Scholar 

  10. D.Y. Park, S.T. Myung, Carbon-coated magnetite embedded on carbon nanotubes for rechargeable lithium and sodium batteries. ACS Appl. Mater. Interfaces 6, 11749–11757 (2014)

    Article  CAS  Google Scholar 

  11. S. Hariharan, K. Saravanan, P. Balaya, \(\alpha \)-MoO\(_3\): A high performance anode material for sodium-ion batteries. Electrochem. Commun. 31, 5–9 (2013)

    Article  CAS  Google Scholar 

  12. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, Redox reaction of SN-Polyacrylate electrodes in aprotic Na cell. Electrochem. Commun. 21, 65–68 (2012)

    Article  CAS  Google Scholar 

  13. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An Unexpected Electrochemical Mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012)

    Article  CAS  Google Scholar 

  14. Z. Yang, Y. Zheng, W. Li, J. Zhang, Investigation of Two-dimensional HF-based mxenes as the anode materials for Li/Na-ion batteries: A DFT Study. J. Comput. Chem. 40, 1352–1359 (2019)

    Article  CAS  Google Scholar 

  15. Q. Meng, J. Ma, Y. Zhang, Z. Li, C. Zhi, A. Hu, J. Fan, The S-Functionalized T\(\text{ i}_3\)C\(_2\) Mxene as a high capacity electrode material for Na-Ion batteries: A DFT Study. Nanoscale 10, 3385–3392 (2018)

    Article  CAS  Google Scholar 

  16. X. Zhang, L. Jin, X. Dai, G. Chen, G. Liu, Two-dimensional GaN: an excellent electrode material providing fast ion diffusion and high storage capacity for Li-Ion and Na-Ion batteries. ACS Appl. Mater. Interfaces 10, 38978–38984 (2018)

    Article  CAS  Google Scholar 

  17. B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Application of silicene, germanene and stanene for Na or Li Ion storage: a theoretical investigation. Electrochim. Acta 213, 865–870 (2016)

    Article  CAS  Google Scholar 

  18. Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013)

    Article  CAS  Google Scholar 

  19. X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014)

    Article  CAS  Google Scholar 

  20. D. Li, L. Zhang, H. Chen, J. Wang, L.X. Ding, S. Wang, P.J. Ashman, H. Wang, Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. 4, 8630–8635 (2016)

    Article  CAS  Google Scholar 

  21. H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. Lett. 4, 1600243 (2017)

    Google Scholar 

  22. S.M. Choi, S.H. Jhi, Self-assembled metal atom chains on graphene nanoribbons. Phys. Rev. Lett. 101, 266105 (2008)

    Article  CAS  Google Scholar 

  23. C. Ma, X. Shao, D. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22, 8911–8915 (2012)

    Article  CAS  Google Scholar 

  24. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  CAS  Google Scholar 

  25. M. Saghafi, F. Mahboubi, S. Mohajerzadeh, M. Fathi, R. Holze, Longitudinal unzipping of carbon nanotubes and their electrochemical performance in supercapacitors. Curr Appl Phys. 14, 1335–1343 (2014)

    Article  Google Scholar 

  26. Y. Qiao, M. Ma, Y. Liu, S. Li, Z. Lu, H. Yue, H. Dong, Z. Cao, Y. Yin, S. Yang, First-principles and experimental study of nitrogen/sulfur Co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J. Mater. Chem. 4, 15565–15574 (2016)

    Article  CAS  Google Scholar 

  27. S. Kharwar, S. Singh, N.K. Jaiswal, First-principles investigation of Pd-doped armchair graphene nanoribbons as a potential rectifier. J. Electron. Mater. 50, 1196–1206 (2021)

    Article  CAS  Google Scholar 

  28. Y. Liu, X. Wang, Y. Dong, Z. Wang, Z. Zhao, J. Qiu, Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J. Mater. Chem. 2, 16832–16835 (2014)

    Article  CAS  Google Scholar 

  29. X. Wang, Z. Zeng, H. Ahn, G. Wang, First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl. Phys. Lett. 95, 183103 (2009)

    Article  CAS  Google Scholar 

  30. S. Gong, Q. Wang, Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability. J. Phys. Chem. C. 121, 24418–24424 (2017)

    Article  CAS  Google Scholar 

  31. S. Ullah, P.A. Denis, F. Sato, Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a DFT study. Appl. Mater. Today 9, 333–340 (2017)

    Article  Google Scholar 

  32. S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer, Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 1–6 (2015)

    Article  CAS  Google Scholar 

  33. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The siesta method for ab initio order-n materials simulation. J. Condens. Matter Phys. 14, 2745 (2002)

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter 54, 16533 (1996)

    Article  CAS  Google Scholar 

  35. X. Sun, Z. Wang, Y.Q. Fu, Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon 116, 415–421 (2017)

    Article  CAS  Google Scholar 

  36. H. Liu, H. Dong, Y. Ji, L. Wang, T. Hou, Y. Li, The Adsorption, Diffusion and capacity of lithium on novel boron-doped graphene nanoribbon: a density functional theory study. Appl. Surf. Sci. 466, 737–745 (2019)

    Article  CAS  Google Scholar 

  37. L. Zhou, Z. Hou, B. Gao, T. Frauenheim, Doped graphenes as anodes with large capacity for lithium-ion batteries. J. Mater. Chem. 4, 13407–13413 (2016)

    Article  CAS  Google Scholar 

  38. X. Fan, W. Zheng, J.L. Kuo, D.J. Singh, Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 7793–7797 (2013)

    Article  CAS  Google Scholar 

  39. K.C. Wasalathilake, G.A. Ayoko, C. Yan, Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: a density functional theory investigation. Carbon 140, 276–285 (2018)

    Article  CAS  Google Scholar 

  40. D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, \(\text{ Ti}_3\)C\(_2\) Mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173–11179 (2014)

    Article  CAS  Google Scholar 

  41. J. Su, Y. Pei, Z. Yang, X. Wang, Ab initio study of graphene-like monolayer molybdenum disulfide as a promising anode material for rechargeable sodium ion batteries. RSC Adv. 4, 43183–43188 (2014)

    Article  CAS  Google Scholar 

  42. X. Lv, W. Wei, Q. Sun, B. Huang, Y. Dai, A first-principles study of NbS\(\text{ e}_2\) monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries. J. Phys. D Appl. Phys. 50, 235501 (2017)

    Article  CAS  Google Scholar 

  43. V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015)

    Article  CAS  Google Scholar 

  44. K.H. Wedepohl, The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Singh.

Ethics declarations

Conflict of interest

No ethical or financial conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.R., Singh, S. Na Adsorption on Para Boron-Doped AGNR for Sodium-Ion Batteries (SIBs): A First Principles Analysis. J. Electron. Mater. 51, 2095–2106 (2022). https://doi.org/10.1007/s11664-022-09475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09475-0

Keywords

Navigation