Skip to main content
Log in

Ab Initio Analysis of Li Adsorption on Beryllium-Doped Zigzag Graphene Nanoribbon for Lithium-Ion Batteries (LIBs)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present work investigates the adsorption behavior of lithium (Li) atoms on beryllium-doped zigzag graphene nanoribbons (ZGNR). The adsorption, open-circuit voltage, and capacity of Li on Be-doped ZGNR are investigated in this study. When Be atoms are doped with pristine ZGNR, the bands shift towards the valance band, whereas for ZGNR of the same width this does not occur. In contrast to ZGNR, Li binds strongly to Be-doped ZGNR, indicating that the doping effect results in a stronger interaction between Li and carbon (Li-C). Li on Be-doped ZGNR has a maximum storage capacity of 474 mAh g\(^{-1}\), which is 14 times higher than that of Li on ZGNR of the same size, according to our calculations. The lowest diffusion barrier of the reported configuration is found to be 0.11 eV for the considered diffusion path 1. The findings suggest that doping of Be atoms at a concentration of 1.2 % improves Li adsorption, diffusion barrier, and storage capacity, giving the theoretical framework for future research on Be-doped ZGNR and other Li storage structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Armand and J.-M. Tarascon, Building better batteries. Nature. 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  2. J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, 2011 pp 171–179

  3. A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, and R.E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 147, 2845 (2000)

    Article  CAS  Google Scholar 

  4. H. Shimoda, B. Gao, X. Tang, A. Kleinhammes, L. Fleming, Y. Wu, and O. Zhou, Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties. Phys. Rev. Lett. 88, 015502 (2001)

    Article  Google Scholar 

  5. E. Pollak, B. Geng, K.-J. Jeon, I.T. Lucas, T.J. Richardson, F. Wang, and R. Kostecki, The interaction of Li\(^+\) with single-layer and few-layer graphene. Nano. Lett. 10, 3386–3388 (2010)

    Article  CAS  Google Scholar 

  6. X. Fan, W. Zheng, J.-L. Kuo, and D.J. Singh, Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces. 5, 7793–7797 (2013)

    Article  CAS  Google Scholar 

  7. M. Liu, A. Kutana, Y. Liu, and B.I. Yakobson, First-principles studies of Li nucleation on graphene. J. Phys. Chem. Lett. 5, 1225–1229 (2014)

    Article  CAS  Google Scholar 

  8. J. Zhou, Q. Sun, Q. Wang, and P. Jena, Tailoring Li adsorption on graphene. Phys. Rev. B. 90, 205427 (2014)

    Article  Google Scholar 

  9. G. Kim, S.-H. Jhi, N. Park, S.G. Louie, and M.L. Cohen, Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B. 78, 085408 (2008)

    Article  Google Scholar 

  10. C. Uthaisar and V. Barone, Edge effects on the characteristics of Li diffusion in graphene. Nano. Lett. 10, 2838–2842 (2010)

    Article  CAS  Google Scholar 

  11. L.-J. Zhou, Z. Hou, and L.-M. Wu, First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C. 116, 21780–21787 (2012)

    Article  CAS  Google Scholar 

  12. F. Hao and X. Chen, First-principles study of lithium adsorption and diffusion on graphene: the effects of strain. Mater. Res. Express. 2, 105016 (2015)

    Article  Google Scholar 

  13. C. Ma, X. Shao, and D. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. A. 22, 8911–8915 (2012)

    Article  CAS  Google Scholar 

  14. Z.-S. Wu, W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS. Nano. 5, 5463–5471 (2011)

    Article  CAS  Google Scholar 

  15. S.M. Choi and S.H. Jhi, Self-assembled metal atom chains on graphene nanoribbons. Phys. Rev. E. 101, 266105 (2008)

    Google Scholar 

  16. H.W. Lee, H.S. Moon, J. Hur, I.T. Kim, M.S. Park, J.M. Yun, K.H. Kim, and S.G. Lee, Mechanism of sodium adsorption on N-doped graphene nanoribbons for sodium ion battery applications: A density functional theory approach. Carbon. 119, 492–501 (2017)

    Article  Google Scholar 

  17. Y. Liu, X. Wang, Y. Dong, Z. Wang, Z. Zhao, and J. Qiu, Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J. Mater. Chem. A. 2, 16832–16835 (2014)

    Article  CAS  Google Scholar 

  18. R. Pawlak, X. Liu, S. Ninova, P. D’Astolfo, C. Drechsel, S. Sangtarash, R. Haner, S. Decurtins, H. Sadeghi, and C.J. Lambert et al., Bottom-up synthesis of nitrogen-doped porous graphene nanoribbons. J. Am. Chem. Soc. 142, 12568–12573 (2020)

    Article  CAS  Google Scholar 

  19. C. Uthaisar, V. Barone, and J.E. Peralta, Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106, 113715 (2009)

    Article  Google Scholar 

  20. X. Wang, Z. Zeng, H. Ahn, and G. Wang, First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl. Phys. Lett. 95, 183103 (2009)

    Article  Google Scholar 

  21. H. Liu, H. Dong, Y. Ji, L. Wang, T. Hou, and Y. Li, The adsorption, diffusion and capacity of lithium on novel boron-doped graphene nanoribbon: A density functional theory study. Appl. Surf. Sci. 466, 737–745 (2019)

    Article  CAS  Google Scholar 

  22. S. Ullah, A. Hussain, W. Syed, M.A. Saqlain, I. Ahmad, and O. Leenaerts, A. Karim, Band-gap tuning of graphene by Be doping and Be. B co-doping: a DFT study. RSC Adv. 5, 55762–55773 (2015)

    CAS  Google Scholar 

  23. F. Lopez-Urias and M. Terrones, H. Terrones, Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. Carbon. 84, 317–326 (2015)

    Article  CAS  Google Scholar 

  24. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002)

    Article  CAS  Google Scholar 

  25. J.P. Perdew, K. Burke, andY. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical review. B. Condens. matter. 54, 16533 (1996)

    CAS  Google Scholar 

  26. S. Kharwar, S. Singh, and N.K. Jaiswal, First-principles investigation of Pd-doped armchair graphene nanoribbons as a potential rectifier. J. Electron. Mater. 50, 1196–1206 (2021)

    Article  CAS  Google Scholar 

  27. X. Sun, Z. Wang, and Y.Q. Fu, Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon. 116, 415–421 (2017)

    Article  CAS  Google Scholar 

  28. H. Liu, H. Dong, Y. Ji, L. Wang, T. Hou, andY. Li, The adsorption, diffusion and capacity of lithium on novel boron-doped graphene nanoribbon: A density functional theory study. Appl. Surf. Sci. 466, 737–745 (2019)

    Article  CAS  Google Scholar 

  29. A. Tang, X. He, H. Yin, Y. Li, Y. Zhang, S. Huang, and D.G. Truhlar, UiO-66 Metal-Organic Framework as an Anode for a Potassium-Ion Battery: Quantum Mechanical Analysis. J. Phys. Chem. C. 125, 9679–9687 (2021)

    Article  CAS  Google Scholar 

  30. D. Er, J. Li, M. Naguib, Y. Gogotsi, and V.B. Shenoy, Ti\(_3\)C\(_2\) mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces. 6, 11173–11179 (2014)

    Article  CAS  Google Scholar 

  31. D. Çakır, C. Sevik, O. Gülseren, and F.M. Peeters, Mo\(_2\)C as a high capacity anode material: A first-principles study. J. Mater. Chem. A. 4, 6029–6035 (2016)

    Article  Google Scholar 

  32. X. Lv, W. Wei, Q. Sun, B. Huang, and Y. Dai, A first-principles study of NbSe\(_2\) monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries. J. Phys. D. 50, 235501 (2017)

    Article  Google Scholar 

  33. D. Li, X. Chen, P. Xiang, H. Du, and B. Xiao, Chalcogenated-Ti\(_3\)C\(_2\)X\(_2\) MXene (X= O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Appl. Surf. Sci. 501, 144221 (2020)

    Article  CAS  Google Scholar 

  34. E. Joseph and M. Haque, The Cohesive Energy Calculations of Some BCC (Li, Cr, Fe, Mo) Lattices Using Density Functional Theory, ’Asian J. Chem. (2016) 1–10

  35. M.R. Kumar and S. Singh, Na Adsorption on Para Boron-Doped AGNR for Sodium-Ion Batteries (SIBs): A First Principles Analysis. J. Electron. Mater. 51, 2095–2106 (2022)

    Article  CAS  Google Scholar 

  36. R. Syamsai, J.R. Rodriguez, V.G. Pol, Q. Van Le, K.M. Batoo, S.F. Adil, S. Pandiaraj, M. Muthumareeswaran, E.H. Raslan, and A.N. Grace, Double transition metal MXene (Ti\(_x\)Ta\(_{4- x}\)C\(_3\)) 2D materials as anodes for Li-ion batteries. Sci. Rep. 11, 1–13 (2021)

    Google Scholar 

  37. X. Bai, X. Wang, X. Lu, Y. Liang, J. Li, L. Wu, H. Li, Q. Hao, B.-J. Ni, C. Wang, Surface defective g-C\(_3\)N\(_{4- x}\)Cl\(_x\) with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants. J. Hazard. Mater. 398, 122897 (2020)

    Article  CAS  Google Scholar 

  38. B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochim. Acta. 213, 865–870 (2016)

    Article  CAS  Google Scholar 

  39. H. Liu, X. Chen, L. Deng, X. Su, K. Guo, and Z. Zhu, Preparation of ultrathin 2D MoS\(_2\)/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta. 206, 184–191 (2016)

    Article  CAS  Google Scholar 

  40. M. Makaremi, B. Mortazavi, and C.V. Singh, 2D Hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: A first principles study, Mater. Today. Energy. 8, 22–28 (2018)

    Google Scholar 

  41. M.J. Momeni, M. Mousavi-Khoshdel, and E. Targholi, First-principles investigation of adsorption and diffusion of Li on doped silicenes: prospective materials for lithium-ion batteries. Mater. Chem. Phys. 192, 125–130 (2017)

    Article  CAS  Google Scholar 

  42. X. Fan, W. Zheng, and J.-L. Kuo, Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl. Mater. Interfaces. 4, 2432–2438 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.R., Singh, S. Ab Initio Analysis of Li Adsorption on Beryllium-Doped Zigzag Graphene Nanoribbon for Lithium-Ion Batteries (LIBs). J. Electron. Mater. 51, 6134–6144 (2022). https://doi.org/10.1007/s11664-022-09807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09807-0

Keywords

Navigation