Skip to main content
Log in

Investigation of pH Effect on the Performance of Undoped Silicon Carbide Nanowire Field-Effect Transistors for the Development of Chemical Sensors and Biosensors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of pH on the performance of undoped silicon carbide nanowire field-effect transistors (SiCNW-FETs) was systematically studied using various solutions with pH ranging from pH 2 to pH 13 and important transport parameters such as transconductance, mobility, and resistivity were reported. Interestingly, at 2 V, alkaline solutions with high pH value (pH 13) revealed a higher transconductance of 7.13 nS and lower resistivity of 40 Ω cm as compared to acidic solutions with 0.01 nS and 2.1x104 Ω cm at pH 2, respectively. A model describing the pH-dependent conductance of the SiCNW-FETs was proposed. Moreover, a comprehensive comparison of the pH effects on the transport properties of the undoped SiCNW-FETs and nitrogen-doped SiCNW-FET was presented and the measurements clearly revealed opposite trends for a wide range of pH solutions. In short, our SiCNW-FETs with high sensitivity, high stability, and minuscule sample volume can provide solutions for the development of harsh environment compatible nanosensors for chemical, biochemical, and environmental sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source voltage (Vds) curves of device “A” (two SiCNWs) with constant gate voltage (Vg) of 0 V after applying different pH values (pH 2, pH 3, pH 5, pH 7, pH 9, pH 11, and pH 13); (b) IdsVg curves of device “A” while keeping Vds constant (0.01 V) at various pH values ranging from pH 2 to pH 13.

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, 25th Anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 26, 2137 (2014).

    Article  CAS  Google Scholar 

  2. C.C. Yee, Md. K. Marshad, M. Nuzaihan, M.F.M. Fathil, and U. Hashim, Fabrication and characterization of undoped polysilicon nanowire for pH sensor. 2014 IEEE Int. Conf. Semicond. Electron. 396, 1520 (2014).

    Google Scholar 

  3. J. Feng, X. Li, G. Zhu, and Q.J. Wang, Emerging high-performance SnS/CdS nanoflowers heterojunction for ultrafast photonics. ACS Appl. Mater. Interfaces. 12, 43098 (2020).

    Article  CAS  Google Scholar 

  4. J. Hsu, B. Huang, C. Huang, and H. Chen, Silicon nanowires as pH sensor. Jpn. J. Appl. Phys. 44, 2626 (2005).

    Article  CAS  Google Scholar 

  5. M. Ham, J. Choi, W. Hwang, C. Park, W. Lee, and J. Myoung, Contact characteristics in GaN nanowire devices. Nanotechnology 17, 2203 (2006).

    Article  CAS  Google Scholar 

  6. H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi, and T. Yanagida, Metal-oxide nanowire molecular sensors and their promises. Chemosensors. 9, 1 (2021).

    Article  CAS  Google Scholar 

  7. T.H. Kim, S.Y. Lee, N.K. Cho, H.K. Seong, H.J. Choi, S.W. Jung, and S.K. Lee, Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device applications. Nanotechnology 17, 3394 (2006).

    Article  CAS  Google Scholar 

  8. F. Roccaforte, F.L. Via, V. Raineri, P. Musumeci, L. Calcagno, and G. Condorelli, Highly reproducible ideal SiC Schottky rectifiers: effects of surface preparation and thermal annealing on the Ni/6H-SiC Barrier height. Appl. Phys. A Mater. Sci. Process. 77, 827 (2003).

    Article  CAS  Google Scholar 

  9. K. Teker, Density and morphology adjustments of gallium nitride nanowires. Appl. Surf. Sci. 283, 1065 (2013).

    Article  CAS  Google Scholar 

  10. P. Tanner, A. Iacopi, H. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D.V. Dao, and N. Nguyen, Excellent rectifying properties of the N-3C-SiC/p-Si Heterojunction subjected to high Temperature annealing for electronics, MEMS, and led applications. Sci. Rep. 7, 10025 (2017).

    Article  Google Scholar 

  11. K. Rogdakis, M. Bescond, E. Bano, and K. Zekentes, Theoretical comparison of 3C-SiC and Si nanowire FETs in ballistic regime. Mater. Sci. Forum 579, 600 (2008).

    Google Scholar 

  12. A. Meng, M. Zhang, J. Zhang, and Z. Li, Synthesis and field emission properties of silicon carbide nanobelts with a median ridge. CrystEngComm 14, 6755 (2012).

    Article  CAS  Google Scholar 

  13. J. Ahn, J. Kim, M. Seol, D.J. Baek, Z. Guo, C. Kim, S. Choi, and Y. Choi, A pH sensor with a double-gate silicon nanowire field-effect transistor. Appl. Phys. Lett. 102, 083701 (2013).

    Article  Google Scholar 

  14. J. Jang, S. Choi, J. Kim, T.J. Park, B. Park, D.M. Kim, S.J. Choi, S.M. Lee, D.H. Kim, and H. Mo, Effect of liquid gate bias rising time in pH sensors based on Si nanowire ion sensitive field effect transistors. Solid-State Electron. 140, 109 (2018).

    Article  CAS  Google Scholar 

  15. S.C. Stephen, Md. K. Marshad, Md. N. Mnor, M.F.M. Fathil, A.R. Ruslinda, and U. Hashim, Fabrication and characterization of doped polysilicon nanowire for pH sensor. Appl. Mech. Mater. 561, 754 (2015).

    Google Scholar 

  16. S. Sinha, R. Mukhiya, R. Sharma, P.K. Khanna, and V.K. Khanna, Fabrication, characterization and electrochemical simulation of AlN-gate ISFET pH sensor. J. Mater. Sci. Mater. Electron. 30, 7163 (2019).

    Article  CAS  Google Scholar 

  17. M. Awais, H. Mousa, and K. Teker, Effect of pH on transport characteristics of silicon Carbide Nanowire field-effect transistor (SiCNW-FET). J. Mater. Sci. Mater. Electron. 32, 3431 (2021).

    Article  CAS  Google Scholar 

  18. S. Paiman, T.H. Ling, M. Husham, and S. Sagadevan, Significant effect on annealing temperature and enhancement on structural, optical and electrical properties of zinc oxide nanowires. Results Phys. 17, 103185 (2020).

    Article  Google Scholar 

  19. A. Uzun, and K. Teker, Silicon carbide nanowire field effect transistors with high on/off current ratio. Microelectron. Eng. 205, 59 (2019).

    Article  CAS  Google Scholar 

  20. D.E. Yates, S. Levine, and T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 70, 1807 (1974).

    Article  CAS  Google Scholar 

  21. S.F.A. Rahman, N.A. Yusof, U. Hashim, and Md. N. Mnor, Design and Fabrication of Silicon Nanowire based Sensor. Int. J. Electrochem. Sci. 8, 10946 (2013).

    Google Scholar 

  22. S. Tang, J. Yan, J. Zhang, S. Wei, Q. Zhang, J. Li, M. Fang, S. Zhang, E. Xiong, Y. Wang, J. Yang, Z. Zhang, Q. Wei, H. Yin, W. Wang, and H. Tu, Fabrication of low cost and low temperature poly-silicon nanowire sensor arrays for monolithic three-dimensional integrated circuits applications. Nanomaterials 10, 2488 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KT gratefully thanks the Istanbul Development Agency (ISTKA) for providing funding for this research (Grant No: TR10/16/YNY/0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasif Teker.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousa, H., Awais, M. & Teker, K. Investigation of pH Effect on the Performance of Undoped Silicon Carbide Nanowire Field-Effect Transistors for the Development of Chemical Sensors and Biosensors. J. Electron. Mater. 51, 2062–2069 (2022). https://doi.org/10.1007/s11664-022-09468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09468-z

Keywords

Navigation