Skip to main content
Log in

Polyhedral Oligosilsesquioxane-Modified Alumina/Aluminum Nitride/Silicone Rubber Composites to Enhance Dielectric Properties and Thermal Conductivity

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Interfacial thermal resistance is the primary impediment to heat flow in materials and devices. This thermal boundary conductance across solid interfaces can affect high-powered thermal conductive materials. In this work, we propose an approach to decreasing the interfacial thermal resistance by improving both the contact area and the interconnection between fillers. Polyhedral oligosilsesquioxane (POSS)-functionalized alumina/aluminum nitride was used as a filler to prepare an ideal dielectric and thermally conductive silicone rubber composite. When the added amount of POSS is 0.3 wt.%, thermal conductivity will increase by 21%. It will also have excellent dielectric properties, with a dielectric constant of 2.2 and a dielectric loss of 0.002. The advantages of the composite we designed are due to the effective surface modification of POSS molecules, the principle of multi-size particle adaptation, and the excellent intrinsic properties of thermally conductive particles.

Graphical Abstract

Schematic of surface modification of the fillers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Song, S. Cui, X. Hou, P. Ding, and L. Shi, ACS. Appl. Mater Interfaces 9, 46 (2017).

    Google Scholar 

  2. Y. Guo, K. Ruan, X. Shi, X. Yang, and J. Gu, Compos. Sci. Technol. 193, 108134 (2020).

    Article  CAS  Google Scholar 

  3. L. Wang, M. Addy, J. Liu, C. Nekich, R. Zhang, P. Peng, Y. Cheng, K. Cobb, Y. Liu, H. Wang, and R. Ruan, Bioresour. Technol. 273, 506 (2019).

    Article  CAS  Google Scholar 

  4. C. Fu, C. Yan, L. Ren, X. Zeng, G. Du, R. Sun, J. Xu, and C. Wong, Compos. Sci. Technol. 177, 118 (2019).

    Article  CAS  Google Scholar 

  5. X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma, J. Tan, C. Li, Q. Zhang, and J. Gu, Compos. Sci. Technol. 164, 59 (2018).

    Article  CAS  Google Scholar 

  6. Z. Han, and A. Fina, Prog. Polym. Sci. 36, 914 (2011).

    Article  CAS  Google Scholar 

  7. X. Huang, P. Jiang, and T. Tanaka, IEEE Electr. Insul. M. 27, 8 (2011).

    Article  Google Scholar 

  8. T. Ji, Y. Feng, M. Qin, S. Li, F. Zhang, F. Lv, and W. Feng, Carbon 131, 149 (2018).

    Article  CAS  Google Scholar 

  9. X. Zhang, Z. Shi, X. Zhang, K. Wang, Y. Zhao, H. Xia, and J. Wang, Carbon 131, 94 (2018).

    Article  CAS  Google Scholar 

  10. X. Xu, J. Chen, J. Zhou, and B. Li, Adv. Mater. 30, 1705544 (2018).

    Article  CAS  Google Scholar 

  11. A. Tessema, D. Zhao, J. Moll, S. Xu, R. Yang, C. Li, S.K. Kumar, and A. Kidane, Polym Test. 57, 101 (2017).

    Article  CAS  Google Scholar 

  12. J. Bicerano, J.F. Douglas, and D.A. Brune, J Macromol Sci. C. 39, 561 (2007).

    Article  Google Scholar 

  13. C. Li, H. Guo, X. Tian, and X. Tian, J. Therm. Stresses. 40, 389 (2017).

    Article  Google Scholar 

  14. C. Xiao, L. Chen, Y. Tang, X. Zhang, K. Zheng, and X. Tian, Compos. Part A. 124, 105511 (2019).

    Article  CAS  Google Scholar 

  15. Y. Liu, Z. Chen, Y. Qin, Y. Shen, Y. Zhou, D. Wang, J. Hu, and W. Feng, J. Electron. Mater. 46, 982 (2017).

    Article  CAS  Google Scholar 

  16. Y. Agari, M. Tanaka, and S. Nagai, J. Appl. Polym. Sci. 34, 1429 (1987).

    Article  CAS  Google Scholar 

  17. D.R. Dinger, and J.E. Funk, MRS Bull. 22, 19 (1997).

    Article  CAS  Google Scholar 

  18. L. Mao, J. Han, D. Zhao, N. Song, L. Shi, and J. Wang, ACS. Appl. Mater Interfaces 10, 33556 (2018).

    Article  CAS  Google Scholar 

  19. L. Ren, X. Zeng, R. Sun, J. Xu, and C. Wong, Chem. Eng. J. 370, 166 (2019).

    Article  CAS  Google Scholar 

  20. J. Gu, Y. Guo, Z. Lv, W. Geng, and Q. Zhang, Compos. Part A. 78, 95 (2015).

    Article  CAS  Google Scholar 

  21. J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, and Q. Zhang, Int. J. Heat. Mass. Tran. 92, 15 (2016).

    Article  CAS  Google Scholar 

  22. J. Gu, C. Liang, J. Dang, W. Dong, and Q. Zhang, RSC. Adv. 6, 35809 (2016).

    Article  CAS  Google Scholar 

  23. H. Guo, J. Liu, Q. Wang, M. Liu, C. Du, B. Li, and L. Feng, Compos. Sci. Technol. 181, 107713 (2019).

    Article  CAS  Google Scholar 

  24. Z. Zhang, M. Cao, P. Chen, B. Yang, B. Wu, J. Miao, R. Xia, and J. Qian, Mater. Design. 177, 107835 (2019).

    Article  CAS  Google Scholar 

  25. J. Song, and Y. Zhang, Int. J. Heat. Mass. Tran. 141, 1049 (2019).

    Article  CAS  Google Scholar 

  26. A. Giri, and P.E. Hopkins, Adv. Funct. Mater. 30, 1903857 (2020).

    Article  CAS  Google Scholar 

  27. K. Tanaka, and Y. Chujo, J. Mater. Chem. 22, 1733 (2012).

    Article  CAS  Google Scholar 

  28. D.B. Cordes, P.D. Lickiss, and F. Rataboul, Chem. Rev. 110, 2081 (2010).

    Article  CAS  Google Scholar 

  29. J.H. Jeon, K. Tanaka, and Y. Chujo, J. mater. Chem. A. 2, 557 (2014).

    Article  Google Scholar 

  30. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, Adv. Funct. Mater. 23, 1824 (2013).

    Article  CAS  Google Scholar 

  31. H. Narikiyo, M. Guo, K. Tanaka, and Y. Chujo, Mater. Chem. Front. 2, 1449 (2018).

    Article  CAS  Google Scholar 

  32. K. Suenaga, K. Tanaka, and Y. Chujo, Chem. Eur. J. 23, 1409 (2017).

    Article  CAS  Google Scholar 

  33. S. Liu, L. Ma, Y. Shu, K.N. Subramanian, A. Lee, and F. Guo, J. Electron. Mater. 43, 1 (2014).

    Article  CAS  Google Scholar 

  34. J. Song, and Y. Zhang, Polym. Compos. 41, 4842 (2020).

    Article  CAS  Google Scholar 

  35. J. Cheng, T. Liu, J. Zhang, B. Wang, J. Ying, F. Liu, and X. Zhang, Appl. Phys. A. 117, 1985 (2014).

    Article  CAS  Google Scholar 

  36. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang, and J. Kou, J. Appl. Polym. Sci. 104, 1312 (2007).

    Article  CAS  Google Scholar 

  37. C. Li, B. Liu, Z. Gao, H. Wang, M. Liu, S. Wang, and C. Xiong, J. Appl. Polym. Sci. 135, 27 (2018).

    Google Scholar 

  38. H. Chiu, T. Sukachonmakul, C. Wang, K. Wattanakul, M. Guo, and Y. Wang, Mater. Chem. Phys. 147, 11 (2014).

    Article  CAS  Google Scholar 

  39. L. Tian, Y. Wang, E. Jin, Y. Li, R. Wang, and Y. Shang, Adv. Mech. Eng. 9, 4 (2017).

    Google Scholar 

  40. H. Chiu, T. Sukachonmakul, M. Kuo, Y. Wang, and K. Wattanakul, Appl. Surf. Sci. 209, 928 (2014).

    Article  CAS  Google Scholar 

  41. Z. Lule, and J. Kim, Compos. Part A. 124, 105506 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Science and Technology Project of State Grid (SGHADK00DYJS2000045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Zhao, T., Dong, L. et al. Polyhedral Oligosilsesquioxane-Modified Alumina/Aluminum Nitride/Silicone Rubber Composites to Enhance Dielectric Properties and Thermal Conductivity. J. Electron. Mater. 51, 2308–2315 (2022). https://doi.org/10.1007/s11664-022-09465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09465-2

Keywords

Navigation