Skip to main content
Log in

Dual P+-Wire Double-Gate Junctionless MOSFET with 10-nm Regime for Low Power Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study simulated and investigated a 3D double-gate junctionless transistor with a gate length of 10 nm and using dual P+-wire (DPW) on the leftmost and rightmost ends of the main channel in the DC and AC modes. The DC analysis showed that more carriers are depleted from the middle of the channel in the DPW structure compared to the same structure without DPW which is the main structure of this study. Moreover, the drain leakage currents at temperatures of 233 K, 300 K, 400 K, and 500 K experienced significant reductions in the DPW structure compared to the main structure. The results are also indicative of the improved drain-induced barrier lowering (DIBL) and ION/IOFF in the DPW structure compared to the main structure. On the other hand, the AC analysis showed that the parasitic capacitances in the DPW structure are reduced at a frequency of 1 MHz compared to the main structure, in turn increasing the cut-off frequency. The analysis results also showed that maximum available power gain (GMA), maximum stable power gain (GMS), max transducer power gain, and unilateral power were improved in the DPW structure compared to the main structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E. Chebaki, F. Djeffal, and T. Bentrcia, Physica Status Solidi (c) 9, 2041 (2012).

    Article  CAS  Google Scholar 

  2. G.L. Priya and N.B. Balamurugan, AEU-Int. J. Electron. C. 99, 130 (2019).

    Article  Google Scholar 

  3. S. Sahay and M.J. Kumar, IEEE J. Electron Dev. Soc. 4, 110 (2016).

    Article  CAS  Google Scholar 

  4. A. Pal and A. Sarkar, Eng. Sci. Technol. Int. J. 17, 205 (2014).

    Google Scholar 

  5. M. Bavir, A. Abbasi, and A.A. Orouji, SILICON 12, 1593 (2019).

    Article  Google Scholar 

  6. M.S. Parihar, D. Ghosh, and A. Kranti, IEEE Trans. Electron Devices 60, 1540 (2013).

    Article  Google Scholar 

  7. H. Ferhati and F. Djeffal, J. Comput. Electron. 17, 129 (2017).

    Article  Google Scholar 

  8. M. Gupta and V.P.-H. Hu, IEEE Electron Device Lett. 41, 473 (2020).

    Article  CAS  Google Scholar 

  9. S.L. Tripathi, S.K. Sinha, and G.S. Patel, J. Electron. Mater. 49, 4291 (2020).

    Article  CAS  Google Scholar 

  10. M.A. Raushan, N. Alam, and M.J. Siddiqui, J. Comput. Electron. 18, 864 (2019).

    Article  CAS  Google Scholar 

  11. A.A. Orouji and A. Abbasi, Superlattices Microstruct. 52, 552 (2012).

    Article  CAS  Google Scholar 

  12. M. Saremi, M. Saremi, H. Niazi, M. Saremi, and A.Y. Goharrizi, J. Electron. Mater. 46, 5570 (2017).

    Article  CAS  Google Scholar 

  13. M. K. Anvarifard, Int. J. Numer. Model. Electron. Netw. Devices Fields 32, (2018).

  14. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nat. Nanotechnol. 5, 225 (2010).

    Article  CAS  Google Scholar 

  15. M. Fallahnejad, M. Vadizadeh, A. Salehi, A. Kashaniniya, and F. Razaghian, Physica E Low-Dimens. Syst. Nanostruct. 115, 113715 (2020).

    Article  CAS  Google Scholar 

  16. T.A. Oproglidis, T.A. Karatsori, C.G. Theodorou, A. Tsormpatzoglou, S. Barraud, G. Ghibaudo, and C.A. Dimitriadis, IEEE Trans. Electron Devices 67, 424 (2020).

    Article  CAS  Google Scholar 

  17. M. Kumar, K. Aditya, and A. Dixit, IEEE Trans. Electron Devices 67, 3424 (2020).

    Article  CAS  Google Scholar 

  18. K. Kumar, A. Raman, B. Raj, S. Singh, and N. Kumar, Appl. Phys. A 126, 1 (2020).

    Article  Google Scholar 

  19. E. Buitrago, G. Fagas, M.F.-B. Badia, Y.M. Georgiev, M. Berthomé, and A.M. Ionescu, Sens. Actuators, B Chem. 183, 1 (2013).

    Article  CAS  Google Scholar 

  20. A. Garg, B. Singh, Y. Singh, and A.E.U. Int, J. Electron. Commun. 118, 153140 (2020).

    Google Scholar 

  21. V. Raju and K. Sivasankaran, Int. J. Numer. Model. Electron. Netw. Devices Fields 32, e2481 (2018).

    Article  Google Scholar 

  22. B. Singh, D. Gola, K. Singh, E. Goel, S. Kumar, and S. Jit, Mater. Sci. Semicond. Process. 58, 82 (2017).

    Article  CAS  Google Scholar 

  23. S. Gundapaneni, S. Ganguly, and A. Kottantharayil, IEEE Electron Device Lett. 32, 261 (2011).

    Article  CAS  Google Scholar 

  24. A.K. Jain and M.J. Kumar, IEEE Access 8, 137540 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Abbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavir, M., Abbasi, A. & Orouji, A.A. Dual P+-Wire Double-Gate Junctionless MOSFET with 10-nm Regime for Low Power Applications. J. Electron. Mater. 51, 2083–2094 (2022). https://doi.org/10.1007/s11664-022-09462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09462-5

Keywords

Navigation