Skip to main content
Log in

Synthesis, Growth, and Characterization of Single-Crystal Benzo[e]indolium for Third-Order Nonlinear Optical Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A promising organic third-order nonlinear optical crystal of the benzo[e]indole family 2-(2-(4-(4-hydroxy) phenyl)vinyl)-1, 1,3-trimethyl-1H-benzo[e] indolium iodide (H-BI) has been synthesized and grown by slow evaporation method. The grown crystal’s physicochemical properties have been characterized by several analytical techniques to ensure the suitability for industrial applications. Single-crystal x-ray diffraction has been employed to confirm the crystal structure and space group of the grown crystal and indicated that the title crystal belongs to a monoclinic crystal system with centrosymmetric space group P21/c. The optical absorption of the title crystal has been analyzed by an ultraviolet–visible (UV–Vis) spectrometer, and no significant absorption was found in the entire visible region. The test crystal linear refractive index value has been calculated using standard optical formulations. The dielectric constant and dielectric losses of the test crystal were measured using an impedance analyzer in the temperature range of 40°C to 100°C; no significant changes were found with respect to temperature, and it is highly favorable for device fabrications. The thermal stability assessment of the title crystal was performed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA), which revealed the grown crystal has moderate thermal stability and that the melting point is 266.4°C. Third-order nonlinear optical properties were investigated by the Z-scan technique and determining the refractive index (n2), absorption coefficient (β), and susceptibility (χ (3)). Based on the corresponding results, the titled crystal is well suited for photonic device applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Li, B. Wu, and G. Su, Nonlinear-optical, optical, and crystallographic properties of methyl p-hydroxybenzoate. J. Cryst. Growth 178, 539 (1997).

    Article  CAS  Google Scholar 

  2. S.R. Marder, B. Kippelen, A.K.Y. Jen, and N. Peyghambarian, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845 (1997).

    Article  CAS  Google Scholar 

  3. P. Günter, Nonlinear Optical Effects and Materials, vol. 78 (New York: Springer, 2000).

    Book  Google Scholar 

  4. L. Mutter, F.D. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, Linear and nonlinear optical properties of the organic crystal DSTMS. J. Opt. Soc. Am. B 24, 2556 (2007).

    Article  CAS  Google Scholar 

  5. E. Sugawara, and H. Nikaido, Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother. 58, 7250 (2014).

    Article  CAS  Google Scholar 

  6. D.J. Williams, Organic polymeric and non-polymeric materials with large optical nonlinearities. Angew. Chemie Int. Ed. English 23, 690 (1984).

    Article  Google Scholar 

  7. R. Nandy, and S. Sankararaman, Donor-acceptor substituted phenylethynyltriphenylenes - excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission. Beilstein J. Org. Chem. 6, 992 (2010).

    Article  CAS  Google Scholar 

  8. T. Seidler, K. Stadnicka, and B. Champagne, Evaluation of the linear and second-order NLO properties of molecular crystals within the local field theory: electron correlation effects, choice of XC functional, ZPVA contributions, and impact of the geometry in the case of 2-methyl-4-nitroaniline. J. Chem. Theory Comput. 10, 2114 (2014).

    Article  CAS  Google Scholar 

  9. J.Y. Lee, K.S. Kim, and B.J. Mhin, Intramolecular charge transfer of π-conjugated push-pull systems in terms of polarizability and electronegativity. J. Chem. Phys. 115, 9484 (2001).

    Article  CAS  Google Scholar 

  10. B.J. Coe, J.A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B.S. Brunschwig, S.J. Coles, T. Gelbrich, M.E. Light, M.B. Hursthouse, and K. Nakatani, Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts. Adv. Funct. Mater. 13, 347 (2003).

    Article  CAS  Google Scholar 

  11. J. Yin, L. Li, Z. Yang, M. Jazbinsek, X. Tao, P. Günter, and H. Yang, A new stilbazolium salt with perfectly aligned chromophores for second-order nonlinear optics: 4-N, N-Dimethylamino-4′-N’-methyl- stilbazolium 3-carboxy-4-hydroxybenzenesulfonate. Dye. Pigment. 94, 120 (2012).

    Article  CAS  Google Scholar 

  12. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv. Funct. Mater. 17, 2018 (2007).

    Article  CAS  Google Scholar 

  13. T. Matsukawa, Y. Yoshida, A. Hoshikawa, S. Okada, and T. Ishigaki, Neutron crystal structure analysis of stilbazolium derivatives for terahertz-wave generation. CrystEngComm 17, 2616 (2015).

    Article  CAS  Google Scholar 

  14. T. Matsukawa, T. Notake, K. Nawata, S. Inada, S. Okada, and H. Minamide, Terahertz-wave generation from 4-dimethylamino-N′-methyl-4′- stilbazolium p-bromobenzenesulfonate crystal: Effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives. Opt. Mater. 36, 1995 (2014).

    Article  CAS  Google Scholar 

  15. H. Reis, Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. J. Chem. Phys. 125, 014506 (2006).

    Article  CAS  Google Scholar 

  16. J. Zyss, Molecular nonlinear optics: materials, physics, and devices (Academic Press, 2013).

  17. M.G. Kuzyk, Physical limits on electronic nonlinear molecular susceptibilities. Phys. Rev. Lett. 85, 1218 (2000).

    Article  CAS  Google Scholar 

  18. J. Lu, S.-H. Lee, X. Li, S.-C. Lee, J.-H. Han, O.-P. Kown, and K.A. Nelson, Efficient terahertz generation in highly nonlinear organic crystal HMB-TMS. Opt. Express 26, 30786 (2018).

    Article  CAS  Google Scholar 

  19. J. H. Jeong, B. J. Kang, J. S. Kim, M. Jazbinsek, S. H. Lee, S. C. Lee, I. H. Baek, H. Yun, J. Kim, Y. S. Lee, J. H. Lee, J. H. Kim, F. Rotermund, and O. P. Kwon: High-power broadband organic THz generator. Sci. Rep. 3, 3200 (2013).

    Article  Google Scholar 

  20. S.R. Marder, J.W. Perry, and C.P. Yakymyshyn, Organic salts with large second-order optical nonlinearities. Chem. Mater. 6, 1137 (1994).

    Article  CAS  Google Scholar 

  21. H. Chen, Q. Ma, Y. Zhou, Z. Yang, M. Jazbinsek, Y. Bian, N. Ye, D. Wang, H. Cao, and W. He, Engineering of organic chromophores with large second-order optical nonlinearity and superior crystal growth ability. Cryst. Growth Des. 15, 5560 (2015).

    Article  CAS  Google Scholar 

  22. S. Shang, R. Li, L. Ping, W. Luo, M. Hai, Z. Yang, D. Wang, H. Cao, and W. He, Large-sized benzo[E] indolium salt single crystals with high optical nonlinearity. Cryst. Eng. Comm. 21, 5626 (2019).

    Article  CAS  Google Scholar 

  23. G.M. Sheldrick, A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 64, 112 (2008).

    Article  CAS  Google Scholar 

  24. X. Liu, Z. Yang, D. Wang, and H. Cao, Molecular structures and second-order nonlinear optical properties of ionic organic crystal materials. Curr. Comput. Aided Drug Des. 6, 158 (2016).

    Google Scholar 

  25. N.R. Rajagopalan, P. Krishnamoorthy, and K. Jayamoorthy, Physicochemical analysis of tetrakis (thiourea) palladium chloride: a prospective non linear optical crystal. J. Inorg. Organomet. Polym. Mater. 27, 739 (2017).

    Article  CAS  Google Scholar 

  26. H.L. Bhat, Growth and characterization of some novel crystals for nonlinear optical applications. Bull. Mater. Sci. 17, 1233 (1994).

    Article  CAS  Google Scholar 

  27. S. Chandran, R. Paulraj, P. Ramasamy, and K.K. Maurya, Determination of nucleation kinetics and crystal perfection, optical, piezoelectric properties of semi-organic NLO single crystal-sodium acid phthalate hemihydrate. J. Inorg. Organomet. Polym. Mater. 27, 1383 (2017).

    Article  CAS  Google Scholar 

  28. R. Robert, C. Justin Raj, S. Krishnan, and S. Jerome Das, Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan-Ramasamy (mSR) method. Phys. B Condens. Matter. 405, 20 (2010).

    Article  CAS  Google Scholar 

  29. T. Suthan, N.P. Rajesh, P.V. Dhanaraj, and C.K. Mahadevan, Growth and characterization of naphthalene single crystals grown by modified vertical Bridgman method. Spectrochim Acta. Part A Mol. Biomol. Spectrosc. 75, 69 (2010).

    Article  CAS  Google Scholar 

  30. A. Sivakumar, M. Manivannan, S. Sahaya Jude Dhas, J. Kalyana Sundar, M. Jose, and S.A.M.B. Dhas, Tailoring the dielectric properties of KDP crystals by shock waves for microelectronic and optoelectronic applications. Mater. Res. Express 6, 086303 (2019).

    Article  CAS  Google Scholar 

  31. E. Dhanumalayan, and G.M. Joshi, High performance thermoplastic blends modified by potassium hexatitanate for dielectric applications. J. Inorg. Organomet. Polym. Mater. 28, 1775 (2018).

    Article  CAS  Google Scholar 

  32. A. Sivakumar, S. Suresh, J.A. Pradeep, S. Balachandar, and S.A. Martin Britto Dhas, Effect of shock waves on dielectric properties of KDP crystal. J. Electron. Mater. 47, 4831 (2018).

    Article  CAS  Google Scholar 

  33. M. Unruan, A. Prasartketrakarn, A. Ngamjarurojana, Y. Laosiritaworn, S. Ananta, and R. Yimnirun, Dielectric and ferroelectric properties of lead zirconate titanate-lead nickel niobate ceramics under compressive stress. J. Appl. Phys. 105, 084111 (2009).

    Article  CAS  Google Scholar 

  34. A. Sivakumar, S. Reena Devi, J. Thirupathy, R. Mohan Kumar, and S.A. Martin Britto Dhas, Effect of shock waves on structural, thermophysical and dielectric properties of glycine phosphate (GPI) crystal. J. Electron. Mater. 48, 7216 (2019).

    Article  CAS  Google Scholar 

  35. S. Patel, P. Saxena, P. Choudhary, A. Yadav, V. N. Rai, and A. Mishra (2020) Effect of Li+ ion substitution on structural and dielectric properties of Bi0.5Na0.5-xLixTiO3 nanoceramics. J. Inorg. Organomet. Polym. Mater. 31, 851 (2020).

    Article  CAS  Google Scholar 

  36. P. Rajesh, P. Ramasamy, and C.K. Mahadevan, Effect of Ni2+ on the structural, optical, thermal and dielectric properties of ADP single crystals. Mater. Lett. 64, 1140 (2010).

    Article  CAS  Google Scholar 

  37. M.K. Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, and R.M. Kumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4′-N′-methylstilbazolium tosylate monohydrate crystals. Opt. Mater. 36, 988 (2014).

    Article  CAS  Google Scholar 

  38. S. Vediyappan, R. Arumugam, K. Pichan, R. Kasthuri, S. P. Muthu, and R. Perumal: Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications. Appl. Phys. A Mater. Sci. Process. 123, 12 (2017).

    Article  CAS  Google Scholar 

  39. A. Antony Raj, R. Gunaseelan, and P. Sagayaraj, Investigation on third order nonlinear optical, electrical and surface properties of organic stilbazolium crystal of 4-N, N-dimethylamino-N′-methylstilbazolium p-methoxybenzenesulfonate. Opt. Mater. 38, 102 (2014).

    Article  CAS  Google Scholar 

  40. K. Nivetha, W. Madhuri, and S. Kalainathan, Synthesis, growth, crystal structure and characterization of new stilbazolium derivative single crystal: (E)-4-(3-ethoxy-2-hydroxystyryl)-1-methyl pyridinium iodide (3ETSI). J. Mater. Sci. Mater. Electron. 28, 8937 (2017).

    Article  CAS  Google Scholar 

  41. S. Karthigha, S. Kalainathan, F. Hamada, M. Yamada, and Y. Kondo, Synthesis, growth and third-order nonlinear optical properties of quinolinium single crystal-PCLQI. RSC Adv. 6, 33159 (2016).

    Article  CAS  Google Scholar 

  42. K. Senthil, S. Kalainathan, A. Ruban Kumar, and P.G. Aravindan, Investigation of synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv. 4, 56112 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors JK and P. Eniya thank the DST-FIST Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyana Sundar Jeyaperumal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniyasan, E., Radhakrishnan, A., Maidur, S.R. et al. Synthesis, Growth, and Characterization of Single-Crystal Benzo[e]indolium for Third-Order Nonlinear Optical Properties. J. Electron. Mater. 51, 3531–3541 (2022). https://doi.org/10.1007/s11664-022-09461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09461-6

Keywords

Navigation