Skip to main content
Log in

Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Semi-organic nonlinear optical (NLO) 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals have been grown by slow evaporation solution technique (SEST) with the growth period of 60 days. The single-crystal XRD analysis confirms the unit cell parameters of the grown crystal. The crystallinity of grown 2A5NPBr was analyzed by powder X-ray diffraction (PXRD) measurement. The presence of functional groups of 2A5NPBr crystal was confirmed by Fourier transform infrared (FTIR) spectrum analysis. The optical transmittance of the grown crystal was analyzed by UV–Vis–NIR analysis. It shows good transparency in the visible and NIR region and it is favorable for nonlinear optical (NLO) device applications. The chemical etching study was carried out and it reveals that the grown crystal has less dislocation density. The photoconductivity study reveals that the grown crystal possesses positive photoconductive nature. The thermal stability of the crystal has been investigated by thermogravimetric (TG) and differential thermal analysis (DTA). The dielectric constant and dielectric loss as a function of frequency were measured. The electronic polarizability (α) of 2A5NPBr molecule has been calculated theoretically by different ways such as Penn analysis, Clausius–Mossotti relation, Lorentz–Lorenz equation, optical bandgap, and coupled dipole method (CDM). The obtained values of electronic polarizability (α) are in good agreement with each other. Laser damage threshold (LDT) of 2A5NPBr crystal has been measured using Nd:YAG laser with the wavelength of 1064 nm. Third-order nonlinear optical property of the grown crystal was studied by Z-scan technique using He–Ne laser of wavelength 632.8 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Tutt, T. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum Electron. 17, 299–338 (1993)

    ADS  Google Scholar 

  2. DZ Chemla (Ed), Nonlinear optical properties of organic molecules and crystals, 1st edn., (Academic Press, Orlando, 1987)

  3. C. Aakeröy, A. Beatty, M. Nieuwenhuyzen, M. Zou, A structural study of 2-amino-5-nitropyridine and 2-amino-3-nitropyridine: intermolecular forces and polymorphism. J. Mater. Chem. 8, 1385–1389 (1998)

    Google Scholar 

  4. G. Anandha babu, P. Ramasamy, A. Chandramohan, Studies on the synthesis, structure, growth and physical properties of an organic NLO crystal: 2-amino-5-nitropyridinium phenolsulfonate. Mater. Res. Bull. 46, 2247–2251 (2011)

    Google Scholar 

  5. G. Anandha Babu, P. Ramasamy, J. Philip, Studies on the growth and physical properties of nonlinear optical crystal: 2-amino-5-nitropyridinium-toluenesulfonate. Mater. Res. Bull. 46, 631–634 (2011)

    Google Scholar 

  6. K. Senthil, S. Kalainathan, F. Hamada, Y. Kondo, Bulk crystal growth and nonlinear optical characterization of a stilbazolium derivative crystal: 4-[2-(3,4-dimethoxyphenyl)ethenyl]-l methylpyridinium tetraphenylborate (DSTPB) for NLO device fabrication. RSC Adv. 5, 79298–79308 (2015)

    Google Scholar 

  7. X. Wang, H. Fang, Q. Ren, J. Sun, T. Li, G. Zhang et al., Preparation, spectrographic characterization, thermal, second and third order nonlinear optical properties of 4,5-bis(foroylsulfanyl)-1,3-dithiole-2-thione. Laser Phys. 19, 1858–1866 (2009)

    ADS  Google Scholar 

  8. J. Pécaut, J. Lévy, R. Masse, Structural evidence in 2-amino-5-nitropyridinium halides (Cl–, Br–) of herringbone motifs favourable to efficient quadratic non-linear optical properties. J. Mater. Chem. 3, 999–1003 (1993)

    Google Scholar 

  9. S. Dhanuskodi, A. Pricilla Jeyakumari, S. Manivannan, Semiorganic NLO material for short-wavelength generation 2-amino-5-nitropyridinium bromide. J. Cryst. Growth 282, 72–78 (2005)

    ADS  Google Scholar 

  10. C. Indumathi, SAC Raj, Optical studies of polymorphic 2-amino-5-nitropyridinium bromide., Int. J. ChemTech Res., 6, 1611–1613 ISSN: 0974–4290. (2014)

    Google Scholar 

  11. W. Kaminsky, From CIF to virtual morphology using the WinXMorphprogram. J. Appl. Crystallogr. 40, 382–385 (2007)

    Google Scholar 

  12. A. Ibanez, J. Levy, C. Mouget, E. Prieur, Crystal growth of a promising nonlinear optical material: 2-amino-5-nitropyridinium chloride. J. Solid State Chem. 129, 22–29 (1997)

    ADS  Google Scholar 

  13. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (B) 15, 627–637 (1966)

    ADS  Google Scholar 

  14. A. Jeyakumari, S. Manivannan, S. Dhanuskodi, Spectral and optical studies of 2-amino-5-nitropyridinium dihydrogen phosphate: a semiorganic nonlinear optical material., Spectrochim. Acta Part A Mol. Biomol. Spectr., 67, 83–86 (2017)

    ADS  Google Scholar 

  15. T. Chen, Z. Sun, C. Song, Y. Ge, J. Luo, W. Lin et al., Bulk crystal growth and optical and thermal properties of the nonlinear optical crystall-histidinium-4-nitrophenolate 4-nitrophenol (LHPP). Cryst. Growth Des. 12, 2673–2678 (2012)

    Google Scholar 

  16. V. Sivasubramani, M. Anis, S. Hussaini, G. Muley, M. Senthil Pandian, P. Ramasamy, Bulk growth of organic non-linear optical (NLO) l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals by Sankaranarayanan–Ramasamy (SR) method. Mater. Res. Innov. 21, 426–433 (2017)

    Google Scholar 

  17. M. Mahadevan, P. Anandan, K. Ramachandran, M. Arivanandhan, Y. Hayakawa, Studies on the growth aspects and characterization of sodium para-nitro phenolate single crystals for nonlinear optical applications. Optik Int. J. Light Electron Opt. 125, 5515–5518 (2017)

    Google Scholar 

  18. T. Chen, Z. Sun, L. Li, S. Wang, Y. Wang, J. Luo et al., Growth and characterization of a nonlinear optical crystal-2,6-diaminopyridinium 4-nitrophenolate 4-nitrophenol (DAPNP). J Cryst. Growth 338, 157–161 (2012)

    ADS  Google Scholar 

  19. M. Kumar, S. Sudhahar, G. Bhagavannarayana, R. Kumar, Crystal growth, structural and optical properties of an organic ion-complex crystal: 4-N,N-dimethylamino-4′-N′-methylstilbazolium iodide. Optik Int. J. Light Electron Opt. 125, 5641–5646 (2017)

    Google Scholar 

  20. A. Gill, S. Kalainathan, G. Bhagavannarayana, Organic nonlinear optical crystal 4-hydroxy-N-methyl 4-stilbazolium besylate synthesis and characterization. Mater. Lett. 64, 1989–1991 (2017)

    Google Scholar 

  21. A. Senthil, P. Ramasamy, Investigation on the SR method growth, etching, birefringence, laser damage threshold and thermal characterization of strontium bis (hydrogen l-malate) hexahydrate single crystal. J. Cryst. Growth 401, 200–204 (2014)

    ADS  Google Scholar 

  22. K Sangwal Etching of crystals: theory, experiment and application, 1st edn., (North Holland Physics Publishing, Amsterdam, 1987)

  23. N Joshi Photoconductivity, 1st edn., (Marcel Dekker, New York, 1990)

  24. RH Bube, Photoconductivity of solids, 1st edn., (Wiley Inter Science, New York, 1981)

  25. B. Boaz, S. Navis Priya, J. Linet, P. Deva Prasath, S. Das, Photoconductivity and dielectric studies on NLO active NPNa and NPLi single crystals. Opt. Mater. 29, 827–832 (2007)

    ADS  Google Scholar 

  26. D. Xue, K. Kitamura, Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun. 122, 537–541 (2002)

    ADS  Google Scholar 

  27. JD Jackson, Classical electrodynamics, 49th edn., P 321, (Wiley Eastern, New Delhi, 1978)

  28. D. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    ADS  MATH  Google Scholar 

  29. C. Balarew, R. Duhlev, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J. Solid State Chem. 55, 1–6 (1984)

    ADS  Google Scholar 

  30. P.V. Rysselberghe, Remarks concerning the Clausius-Mossotti Law. J. Phys. Chem. 36, 1152–1155 (1932)

    Google Scholar 

  31. M. Born, E. Wolf, 2nd edn., (Osnovy optiki, Moscow, 1973)

  32. M. Renne, B. Nijboer, Microscopic derivation of macroscopic Van der Waals forces. Chem. Phys. Lett. 1, 317–320 (1967)

    ADS  Google Scholar 

  33. B. Nijboer, M. Renne, Microscopic derivation of macroscopic van der waals forces. Chem. Phys. Lett. 2, 35–38 (1968)

    ADS  Google Scholar 

  34. P. Karuppasamy, V. Sivasubramani, M. Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystals. RSC Adv. 6, 109105–109123 (2016)

    Google Scholar 

  35. K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Investigation on the growth, structural, HOMO–LUMO and optical studies of 1-ethyl-2-[2-(4-hydroxy-phenyl)-vinyl]-pyridinium iodide (HSPI)-a new stilbazolium derivative for third-order NLO applications. RSC Adv. 6, 35977–35990 (2016)

    Google Scholar 

  36. K. Chauhan, S. Arora, Diamagnetic and photoabsorption characterisation of gel-grown cadmium oxalate single crystals. Cryst. Res. Technol. 44, 189–196 (2009)

    Google Scholar 

  37. P. Vasudevan, S. Sankar, S. Gokul Raj, Studies on second harmonic generation efficiency of organic material l-arginine maleate dihydrate. Optik Int. J. Light Electron Opt. 124, 4155–4158 (2013)

    Google Scholar 

  38. K. Senthil, S. Kalainathan, A. Kumar, P. Aravindan, Investigation of synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv. 4, 56112–56127 (2014)

    Google Scholar 

  39. N. Boling, M. Crisp, G. Dubé, Laser induced surface damage, Appl. Opt. 12, 650–660 (1973)

    ADS  Google Scholar 

  40. D. Joseph Daniel, P. Ramasamy, Studies on semi-organic non linear optical single crystal: Lithium formate monohydrate (HCO2Li⋅H2O). Opt. Mater. 36, 971–976 (2014)

    ADS  Google Scholar 

  41. K. Rajesh, P. Kumar, Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal., J. Mater., 1–5 (2014) (2014)

    Google Scholar 

  42. N. Vijayan, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, K. Maurya, P. Ramasamy, A comparative study on solution- and Bridgman-Grown single crystals of benzimidazole by high-resolution X-ray diffractometry, Fourier transform infrared, microhardness, laser damage threshold, and second-harmonic generation measurements. Cryst. Growth Des. 6, 1542–1546 (2006)

    Google Scholar 

  43. S. Martin Britto Dhas, M. Suresh, G. Bhagavannarayana, S. Natarajan, Growth and characterization of l-Tartaric acid, an NLO material. J. Cryst. Growth 309, 48–52 (2007)

    ADS  Google Scholar 

  44. X. Liu, X. Wang, X. Yin, S. Liu, W. He, L. Zhu et al., Bulk growth and physical properties of diguanidinium phosphate monohydrate (G2HP) as a multi-functional crystal. Crystengcomm 16, 930–938 (2014)

    Google Scholar 

  45. E. Van Stryland, H. Vanherzeele, M. Woodall, M. Soileau, A. Smirl, S. Guha et al., Two photon absorption, nonlinear refraction, and optical limiting in semiconductors. Opt. Eng. 24, 613–623 (1985)

    ADS  Google Scholar 

  46. C. Mendonca, D. Correa, F. Marlow, T. Voss, P. Tayalia, E. Mazur, Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer., Appl. Phys. Lett., 95, 113309 (1–3) (2009)

    ADS  Google Scholar 

  47. K. DeLong, K. Rochford, G. Stegeman, Effect of two-photon absorption on all-optical guided-wave devices. Appl. Phys. Lett. 55, 1822–1823 (2017)

    Google Scholar 

  48. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, E. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    ADS  Google Scholar 

  49. S. Shettigar, G. Umesh, K. Chandrasekharan, B. Kalluraya, Third order nonlinear optical properties and two photon absorption in newly synthesized phenyl sydnone doped polymer. Synth. Met. 157, 142–146 (2007)

    Google Scholar 

  50. M. Zhao, B. Singh, P. Prasad, A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers. J. Chem. Phys. 89, 5535–5541 (1988)

    ADS  Google Scholar 

  51. R. Jauhar, S. Kalainathan, P. Murugakoothan, Three dimensional organic framework of 2-amino 4, 6 dimethoxypyrimidine p-toluenesulfonic acid monohydrate: synthesis, single crystal growth and its properties. J. Cryst. Growth 424, 42–48 (2015)

    Google Scholar 

  52. M. Nirosha, S. Kalainathan, S. Sarveswari, V. Vijayakumar, A. Srikanth, Growth, spectral, optical, thermal, surface analysis and third order nonlinear optical properties of an organic single crystal: 1-(2-Methyl-6-nitro-4-phenyl-3-quinolyl) ethanone, Spectrochim. Acta Part A Mol. Biomol. Spectr., 137, (2015) pp. 23–28

    ADS  Google Scholar 

  53. I. Bincy, R. Gopalakrishnan, Studies on synthesis, growth and characterization of a novel third order nonlinear optical 4-dimethylaminopyridinium p-Toluenesulfonate single crystal. Opt. Mater. 37, 267–276 (2014)

    ADS  Google Scholar 

  54. T. Thilak, M. Ahamed, G. Vinitha, Third order nonlinear optical properties of potassium dichromate single crystals by Z-scan technique. Optik Int. J. Light Electron Opt. 124, 4716–4720 (2013)

    Google Scholar 

  55. A. Arunkumar, P. Ramasamy, Bulk single crystals of ammonium acid phthalate grown by the Sankaranarayanan–Ramasamy method for optical limiting applications. J. Cryst. Growth 401, 195–199 (2014)

    ADS  Google Scholar 

  56. M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. Mohan Kumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4′-N′-methylstilbazolium tosylate monohydrate crystals. Opt. Mater. 36, 988–995 (2014)

    ADS  Google Scholar 

  57. F. Li, N. Zong, F. Zhang, J. Yang, F. Yang, Q. Peng et al., Investigation of third-order optical nonlinearity in KBe2BO3F2 crystal by Z-scan. Appl. Phys. B 108, 301–305 (2012)

    ADS  Google Scholar 

  58. Y. Zhou, E. Wang, J. Peng, J. Liu, C. Hu, R. Huang et al., Synthesis and the third-order optical nonlinearities of two novel charge-transfer complexes of a heteropoly blue type (C9H7NO)4 H7PMo12O40·3H2O (C9H7NO = quinolin-8-ol) and (phen)3 H7PMo12O40·CH3CN·H.2O (phen = 1,10-phenanthroline), Polyhedron, 18,1419–1423 (1999)

    Google Scholar 

  59. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, X. Xu, F. Zhang, Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 6, 14490–14495 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB for financial support in the Grant No. SB/EMQ-015/2013. The authors acknowledge Prof. S. Kalainathan (Centre for Crystal Growth) and D. Rajan Babu (School of Advanced Sciences), VIT University, Vellore, Tamilnadu, India for providing the Z-scan, LDT, and refractive index measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasubramani Vediyappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vediyappan, S., Arumugam, R., Pichan, K. et al. Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications. Appl. Phys. A 123, 780 (2017). https://doi.org/10.1007/s00339-017-1394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1394-3

Navigation