Skip to main content
Log in

Tunable Plasmonic Properties of Bimetallic Au-Cu Nanorods for SERS-Based Sensing Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this report, bimetallic Au-Cu nanorods were successfully prepared by a seed-mediated co-reduction strategy. Aspect ratio and corresponding plasmon wavelength of bimetallic nanoparticles can be tuned by changing the metal precursor ratio, gold seed solution or silver nitrate solution volumes used in the growth step. In the variation range of the current work, we found that the bimetallic Au-Cu rod aspect ratio increases with an increase of copper content, a decrease of gold seed and silver nitrate volumes. Using Nile blue A as a probe molecule, we investigated the surface-enhanced Raman scattering (SERS) activity of bimetallic Au-Cu nanorods and observed a significant improvement of SERS performance with an increase of the aspect ratios. These results suggest that a combination of unique features of two plasmonic metals promises potential applicability in many SERS-based analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Nguyen, N. Felidj, and C. Mangeney, Looking for Synergies in Molecular Plasmonics through Hybrid Thermoresponsive Nanostructures. Chem. Mater. 28, 3564 (2016).

    Article  CAS  Google Scholar 

  2. M. Nguyen, I. Kherbouche, M. Braik, A. Belkhir, L. Boubekeur-Lecaque, J. Aubard, C. Mangeney, and N. Felidj, Dynamic Plasmonic Platform To Investigate the Correlation between Far-Field Optical Response and SERS Signal of Analytes. ACS Omega 4, 1144 (2019).

    Article  CAS  Google Scholar 

  3. F. Gao, L. Du, D. Tang, Y. Lu, Y. Zhang, and L. Zhang, A Cascade Signal Amplification Strategy for Surface Enhanced Raman Spectroscopy Detection of Thrombin Based on DNAzyme Assistant DNA Recycling and Rolling Circle Amplification. Biosens. Bioelectron. 66, 423 (2015).

    Article  CAS  Google Scholar 

  4. N. Li, F. Shen, Z. Cai, W. Pan, Y. Yin, X. Deng, X. Zhang, J.O.A. Machuki, Y. Yu, D. Yang, Y. Yang, M. Guan, and F. Gao, Target-Induced Core-Satellite Nanostructure Assembly Strategy for Dual-Signal-On Fluorescence Imaging and Raman Quantification of Intracellular MicroRNA Guided Photothermal Therapy. Small 16, 2005511 (2020).

    Article  CAS  Google Scholar 

  5. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R.S. Varma, Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 116, 3722 (2016).

    Article  CAS  Google Scholar 

  6. P. Deka, R.C. Deka, and P. Bharali, In Situ Generated Copper Nanoparticle Catalyzed Reduction of 4-Nitrophenol. New J. Chem. 38, 1789 (2014).

    Article  CAS  Google Scholar 

  7. N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, and S. Santra, Copper Nanoparticles as Inexpensive and Efficient Catalyst: A Valuable Contribution in Organic Synthesis. Coord. Chem. Rev. 353, 1 (2017).

    Article  CAS  Google Scholar 

  8. A. Viswadevarayalu, P. Venkata Ramana, G. Sreenivasa Kumar, L. Rathna Sylvia, J. Sumalatha, and S. Adinarayana Reddy, Fine Ultrasmall Copper Nanoparticle (UCuNPs) Synthesis by Using Terminalia bellirica Fruit Extract and Its Antimicrobial Activity. J. Cluster Sci. 27, 155 (2016).

    Article  CAS  Google Scholar 

  9. M. Dendisová-Vyškovská, V. Prokopec, M. Člupek, and P. Matějka, Comparison of SERS Effectiveness of Copper Substrates Prepared by Different Methods: What are the Values of Enhancement Factors? J. Raman Spectrosc. 43, 181 (2012).

    Article  Google Scholar 

  10. K. Zhang, Fabrication of Copper Nanoparticles/Graphene Oxide Composites for Surface-Enhanced Raman Scattering. Appl. Surf. Sci. 258, 7327 (2012).

    Article  CAS  Google Scholar 

  11. Z.-J. Wang, X. Wang, J.-J. Lv, J.-J. Feng, X. Xu, A.-J. Wang, and Z. Liang, Bimetallic Au–Pd Nanochain Networks: Facile Synthesis and Promising Application in Biaryl Synthesis. New J. Chem. 41, 3894 (2017).

    Article  CAS  Google Scholar 

  12. N. Toshima, and T. Yonezawa, Bimetallic Nanoparticles—Novel Materials for Chemical and Physical Applications. New J. Chem. 22, 1179 (1998).

    Article  CAS  Google Scholar 

  13. A. Monga, and B. Pal, Improved Catalytic Activity and Surface Electro-Kinetics of Bimetallic Au-Ag Core–Shell Nanocomposites. New J. Chem. 39, 304 (2015).

    Article  CAS  Google Scholar 

  14. C. Fernández-Navarro, S. Mejía-Rosales, and A. Tlahuice-Flores, Structural Diagram of AuxCu1−x Nanoparticles: Dependency of Geometry on Composition and Size. J. Cluster Sci. 29, 815 (2018).

    Article  Google Scholar 

  15. O. Bakina, E. Glazkova, A. Pervikov, A. Lozhkomoev, N. Rodkevich, N. Svarovskaya, M. Lerner, L. Naumova, E. Varnakova, and V. Chjou, Design and Preparation of Silver-Copper Nanoalloys for Antibacterial Applications. J. Cluster Sci. 32, 779 (2021).

    Article  CAS  Google Scholar 

  16. M. Nguyen, X. Sun, E. Lacaze, P.M. Winkler, A. Hohenau, J.R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, and N. Félidj, Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonics Applications. ACS Photon. 2, 1199 (2015).

    Article  CAS  Google Scholar 

  17. M. Nguyen, I. Kherbouche, S. Gam-Derouich, I. Ragheb, S. Lau-Truong, A. Lamouri, G. Lévi, J. Aubard, P. Decorse, N. Félidj, and C. Mangeney, Regioselective Surface Functionalization of Lithographically Designed Gold Nanorods by Plasmon-Mediated Reduction of Aryl Diazonium Salts. Chem. Commun. 53, 11364 (2017).

    Article  CAS  Google Scholar 

  18. M. Nguyen, A. Lamouri, C. Salameh, G. Levi, J. Grand, L. Boubekeur-Lecaque, C. Mangeney, and N. Felidj, Plasmon-Mediated Chemical Surface Functionalization at the Nanoscale. Nanoscale 8, 8633 (2016).

    Article  CAS  Google Scholar 

  19. Z. Hai, N. El Kolli, J. Chen, and H. Remita, Radiolytic Synthesis of Au–Cu Bimetallic Nanoparticles Supported on TiO2: Application in Photocatalysis. New J. Chem. 38, 5279 (2014).

    Article  CAS  Google Scholar 

  20. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, and P. Mulvaney, Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 249, 1870 (2005).

    Article  Google Scholar 

  21. N.R. Jana, L. Gearheart, and C.J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 13, 1389 (2001).

    Article  CAS  Google Scholar 

  22. L.T. Hoang, H.V. Pham, and M.T.T. Nguyen, Investigation of the Factors Influencing the Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles. J. Electron. Mater. 49, 1864 (2019).

    Article  Google Scholar 

  23. R.H. Alshammari, U.C. Rajesh, D.G. Morgan, and J.M. Zaleski, Au-Cu@PANI Alloy Core Shells for Aerobic Fibrin Degradation under Visible Light Exposure. ACS Appl. Bio Mater. 3, 7631 (2020).

    Article  CAS  Google Scholar 

  24. N.E. Motl, E. Ewusi-Annan, I.T. Sines, L. Jensen, and R.E. Schaak, Au−Cu Alloy Nanoparticles with Tunable Compositions and Plasmonic Properties: Experimental Determination of Composition and Correlation with Theory. J. Phys. Chem. C 114, 19263 (2010).

    Article  CAS  Google Scholar 

  25. L. Shi, A. Wang, Y. Huang, X. Chen, J.J. Delgado, and T. Zhang, Facile Synthesis of Ultrathin AuCu Dimetallic Nanowire Networks. Eur. J. Inorg. Chem. 2012, 2700 (2012).

    Article  CAS  Google Scholar 

  26. M.K. Singh, P. Chettri, J. Basu, A. Tripathi, B. Mukherjee, A. Tiwari, and R.K. Mandal, Synthesis of Anisotropic Au–Cu Alloy Nanostructures and its Application in SERS for Detection of Methylene Blue. Mater. Res. Exp. 7, 015052 (2020).

    Article  CAS  Google Scholar 

  27. S. Chen, S.V. Jenkins, J. Tao, Y. Zhu, and J. Chen, Anisotropic Seeded Growth of Cu–M (M = Au, Pt, or Pd) Bimetallic Nanorods with Tunable Optical and Catalytic Properties. J. Phys. Chem. C 117, 8924 (2013).

    Article  CAS  Google Scholar 

  28. A. Henkel, A. Jakab, G. Brunklaus, and C. Sönnichsen, Tuning Plasmonic Properties by Alloying Copper into Gold Nanorods. J. Phys. Chem. C 113, 2200 (2009).

    Article  CAS  Google Scholar 

  29. S. Thota, Y. Zhou, S. Chen, S. Zou, and J. Zhao, Formation of Bimetallic Dumbbell Shaped Particles with a Hollow Junction During Galvanic Replacement Reaction. Nanoscale 9, 6128 (2017).

    Article  CAS  Google Scholar 

  30. B. Nikoobakht, and M.A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 15, 1957 (2003).

    Article  CAS  Google Scholar 

  31. E. Dubreil, S. Mompelat, V. Kromer, Y. Guitton, M. Danion, T. Morin, D. Hurtaud-Pessel, and E. Verdon, Dye Residues in Aquaculture Products: Targeted and Metabolomics Mass Spectrometric Approaches to Track Their Abuse. Food Chem. 294, 355 (2019).

    Article  CAS  Google Scholar 

  32. S. Thota, Y. Wang, and J. Zhao, Colloidal Au–Cu Alloy Nanoparticles: Synthesis, Optical Properties and Applications. Mater. Chem. Front. 2, 1074 (2018).

    Article  CAS  Google Scholar 

  33. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  34. T.D. Tran, L.T. Le, D.H. Nguyen, M.T. Pham, D.Q. Truong, H.V. Pham, M.T.T. Nguyen, and M.P.D. Tran, Gold Nanorod/ Molybdenum Sulfide Core/Shell Nanostructure Synthesized by a Photo-Induced Reduction Process. Nanotechnology 31, 265602 (2020).

    Article  CAS  Google Scholar 

  35. Y.H. Chen, H.H. Hung, and M.H. Huang, Seed-Mediated Synthesis of Palladium Nanorods and Branched Nanocrystals and Their Use as Recyclable Suzuki Coupling Reaction Catalysts. J. Am. Chem. Soc. 131, 9114 (2009).

    Article  CAS  Google Scholar 

  36. M.T.T. Nguyen, D.H. Nguyen, M.T. Pham, H.V. Pham, and C.D. Huynh, Synthesis and Vertical Self-Assembly of Gold Nanorods for Surface Enhanced Raman Scattering. J. Electron. Mater. 48, 4970 (2019).

    Article  CAS  Google Scholar 

  37. C.J. Murphy, L.B. Thompson, D.J. Chernak, J.A. Yang, S.T. Sivapalan, S.P. Boulos, J. Huang, A.M. Alkilany, and P.N. Sisco, Gold Nanorod Crystal Growth: From Seed-Mediated Synthesis to Nanoscale Sculpting. Curr. Opin. Colloid Interface Sci. 16, 128 (2011).

    Article  CAS  Google Scholar 

  38. J. Jia, H.-H. Xu, G.-R. Zhang, Z. Hu, and B.-Q. Xu, High Quality Gold Nanorods and Nanospheres for Surface-Enhanced Raman Scattering Detection of 2,4-Dichlorophenoxyacetic Acid. Nanotechnology 23, 495710 (2012).

    Article  Google Scholar 

  39. D.K. Smith, N.R. Miller, and B.A. Korgel, Iodide in CTAB Prevents Gold Nanorod Formation. Langmuir 25, 9518 (2009).

    Article  CAS  Google Scholar 

  40. M. Nguyen, A. Kanaev, X. Sun, E. Lacaze, S. Lau-Truong, A. Lamouri, J. Aubard, N. Felidj, and C. Mangeney, Tunable Electromagnetic Coupling in Plasmonic Nanostructures Mediated by Thermoresponsive Polymer Brushes. Langmuir 31, 12830 (2015).

    Article  CAS  Google Scholar 

  41. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, Localized Surface Plasmon Resonance of Nanoporous Gold. Appl. Phys, Lett. 98, 093701 (2011).

    Article  Google Scholar 

  42. H. Yockell-Lelièvre, F. Lussier, and J.F. Masson, Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. J. Phys. Chem. C 119, 28577 (2015).

    Article  Google Scholar 

  43. K. Nehra, S.K. Pandian, M.S.S. Bharati, and V.R. Soma, Enhanced Catalytic and SERS Performance of Shape/Size Controlled Anisotropic Gold Nanostructures. New J. Chem. 43, 3835 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is funded by the Ministry of Education and Training of Vietnam under Grant Number B2021-BKA-17. The authors would also like to thank Nippon Sheet Glass Foundation for Materials Science and Engineering for the support and Dr. Hyuk Su Han (Konkuk University) for the HAADF-STEM and EDX mapping measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Thi Tuyet Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, X.T., Trinh, L.T., Van Pham, H. et al. Tunable Plasmonic Properties of Bimetallic Au-Cu Nanorods for SERS-Based Sensing Application. J. Electron. Mater. 51, 1857–1865 (2022). https://doi.org/10.1007/s11664-022-09455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09455-4

Keywords

Navigation