Skip to main content
Log in

The Effect of Bias Stress on the Performance of Amorphous InAlZnO-Based Thin Film Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In amorphous InAlZnO (a-IAZO), the addition of the third cation of Al further slows the crystallization kinetics of In2O3 and enhances amorphous phase stability, compared to the binary cation system of InZnO. In addition, substantially high carrier mobilities of a-IAZO are obtained, in its unannealed state: Hall mobility of 30–50 cm2/Vs at a high carrier density regime (>~1018/cm3) and thin film transistor (TFT) field effect mobility of ~8–15 cm2/Vs at a low carrier density regime (<~1016/cm3). Gate bias stress stability of IAZO TFTs is investigated with positive and negative gate biases over time. Because of the channel depletion of n-type IAZO when negative gate bias is applied, no performance instabilities were identified. However, with positive gate bias stress (PBS) conditions (30 V), the threshold voltage (VT) shifts towards higher voltages during the initial 100 s and then no significant changes in VT are observed during the remaining time, over 105 s of the dependent measurements. The TFT field effect mobility shows a similar trend: increases from 7.64 cm2/Vs to 11.74 cm2/Vs within the first 100 s and then is saturated. It is identified that the PBS-induced device parameter variations are attributed to an increase and saturation of trap density at the channel/dielectric interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488–492 (2004).

    Article  CAS  Google Scholar 

  2. S. Lee and D. C. Paine, Appl. Phys. Lett., 104, 252103 (2014).

  3. B. Tiwari, P. G. Bahubalindruni, A. Santa, J. Martins, P. Mittal, J. Goes, R. Martins, E. Fortunato and P. Barquinha, IEEE J. Elect. Dev. Soc., 7, 329-334 (2019).

  4. J. Jean, A. Wang, and V. Bulović, Org. Elect. 31, 120–126 (2016).

    Article  CAS  Google Scholar 

  5. N. Münzenrieder, C. Zysset, L. Petti, T. Kinkeldei, G.A. Salvatore, and G. Tröster, Solid State Electron. 87, 17–20 (2013).

    Article  Google Scholar 

  6. C.-C. Chang, P.-T. Liu, C.-Y. Chien and Y.-S. Fan, Appl. Phys. Lett., 112, 172101 (2018).

  7. M.-S. Kim, Y. Hwan Hwang, S. Kim, Z. Guo, D.-I. Moon, J.-M. Choi, M.-L. Seol, B.-S. Bae and Y.-K. Choi, Appl. Phys. Lett., 101, 243503 (2012).

  8. J. Rosa, A. Kiazadeh, L. Santos, J. Deuermeier, R. Martins, H.L. Gomes, and E. Fortunato, ACS Omega 2, 8366–8372 (2017).

    Article  CAS  Google Scholar 

  9. N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, Thin Solid Films 496, 99–103 (2006).

    Article  CAS  Google Scholar 

  10. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945–2986 (2012).

    Article  CAS  Google Scholar 

  11. J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim and S.-I. Kim, Appl. Phys. Lett., 90, 262106 (2007).

  12. J.-S. Park, K. Kim, Y.-G. Park, Y.-G. Mo, H.D. Kim, and J.K. Jeong, Adv. Mater. 21, 329–333 (2009).

    Article  CAS  Google Scholar 

  13. S. Lee, H. Park and D. C. Paine, J. Appl. Phys., 109, 063702 (2011).

  14. S. Lee, K. Park, and D.C. Paine, J. Mater. Res. 27, 2299–2308 (2012).

    Article  CAS  Google Scholar 

  15. B. Yaglioglu, Y.J. Huang, H.Y. Yeom, and D.C. Paine, Thin Solid Films 496, 89–94 (2006).

    Article  CAS  Google Scholar 

  16. T. Moriga, D.D. Edwards, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J.L. Schindler, C.R. Kannewurf, and I. Nakabayashi, J. Am. Ceram. Soc. 81, 1310–1316 (1998).

    Article  CAS  Google Scholar 

  17. Y.S. Chun, S. Chang, and S.Y. Lee, Microelectron. Eng. 88, 1590–1593 (2011).

    Article  CAS  Google Scholar 

  18. S. Wu, H. Feng, M. Yu, I. Wang, T. Hou, and I.E.E.E. Elect, Dev. Lett. 34, 1265–1267 (2013).

    Article  CAS  Google Scholar 

  19. W. H. Jeong, G. H. Kim, H. S. Shin, B. Du Ahn, H. J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon and S. Y. Lee, Appl. Phys. Lett., 96, 093503 (2010).

  20. A. Reed, C. Stone, K. Roh, H.W. Song, X. Wang, M. Liu, D.-K. Ko, K. No, and S. Lee, J. Mater. Chem. C 8, 13798–13810 (2020).

    Article  CAS  Google Scholar 

  21. M. Liu, X. Wang, H. Wook Song, H. Kim, M. Clevenger, D.-K. Ko, K. No and S. Lee, Appl. Surf. Sci., 556, 149676 (2021).

  22. J.F. Conley, IEEE Trans. Dev. Mater. Rel. 10, 460–475 (2010).

    Article  CAS  Google Scholar 

  23. J. Jang, J. K. Um and M. Mativenga, Proceedings of the 2013 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 373-376 (2013).

  24. Y. Song, A. Katsman, A.L. Butcher, D.C. Paine, and A. Zaslavsky, Solid State Elect. 136, 43–50 (2017).

    Article  CAS  Google Scholar 

  25. J. Jia, A. Suko, Y. Shigesato, T. Okajima, K. Inoue and H. Hosomi, Phys. Rev. Appl., 9, 014018 (2018).

  26. J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008).

  27. R. B. M. Cross and M. M. De Souza, Appl. Phys. Lett., 89, 263513 (2006).

  28. M.J. Powell, C. Vanberkel, A.R. Franklin, S.C. Deane, and W.I. Milne, Phys. Rev. B 45, 4160–4170 (1992).

    Article  CAS  Google Scholar 

  29. Y.S. Shiah, K. Sim, S. Ueda, J. Kim, H. Hosono, and I.E.E.E. Elect, Dev. Lett. 42, 1319–1322 (2021).

    Article  CAS  Google Scholar 

  30. D.C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, Thin Solid Films 516, 5894–5898 (2008).

    Article  CAS  Google Scholar 

  31. C.W. Ow-Yang, H.-Y. Yeom, and D.C. Paine, Thin Solid Films 516, 3105–3111 (2008).

    Article  CAS  Google Scholar 

  32. S. Lee and D. C. Paine, Appl. Phys. Lett., 102, 052101 (2013).

  33. A.S. Reed, D.C. Paine, and S. Lee, J. Electron. Mater. 45, 6310–6316 (2016).

    Article  CAS  Google Scholar 

  34. P. Agoston and K. Albe, Phys. Rev. B, 81, 195205 (2010).

  35. E. K.-H. Yu, S. Jun, D. H. Kim and J. Kanicki, J. Appl. Phys., 116, 154505 (2014).

  36. J.-M. Lee, I.-T. Cho, J.-H. Lee and H.-I. Kwon, Appl. Phys. Lett., 93, 093504 (2008).

  37. K. Nomura, T. Kamiya and H. Hosono, Appl. Phys. Lett., 99, 053505 (2011).

  38. A. J. Leenheer, J. D. Perkins, M. F. A. M. van Hest, J. J. Berry, R. P. O'Hayre and D. S. Ginley, Phys. Rev. B, 77, 115215 (2008).

Download references

Acknowledgments

This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 21011042) by KRISS. K.N. was supported by the Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Wook Song or Sunghwan Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Qin, F., Rothschild, M. et al. The Effect of Bias Stress on the Performance of Amorphous InAlZnO-Based Thin Film Transistors. J. Electron. Mater. 51, 1813–1819 (2022). https://doi.org/10.1007/s11664-022-09453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09453-6

Keywords

Navigation