Skip to main content
Log in

Effect of Annealing Temperature on Enhancement of Electrical Performance and Stability of Amorphous SiZnSnO Thin Film Transistors

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Amorphous Si doped ZnSnO (a-SZTO) was used to investigate the effect of annealing temperature on variation of the electrical performance and stability of amorphous oxide semiconductors used in thin film transistors. It was observed that by as increasing the annealing temperature, the electrical characteristics such as field-effect mobility (μFE), subthreshold swing, and on-to-off current ratio (Ion/off) were enhanced because while the carrier concentration increased the defect decreased. The devices were annealed at 400, 500, and 600 °C. Transfer curves were obtained at 400 and 500 °C, but at 600 °C, a conductive characteristic were revealed because of increased carrier concentration. The negative bias temperature stress (NBTS) was measured at 600 °C. A gate voltage was applied to the devices − 20 V for 2 h. Threshold voltage shift (ΔVth) was measured to be about 5.6 and 1.59 V at 400 and 500 °C respectively. This enhancement was mainly due in the decrease in defects by annealing. By increasing the annealing temperature, the defect density decreased and stability was enhanced. Transmission line method was used to find the relation between the electrical characteristics and the annealing temperature. The total resistance decreased as the annealing temperature was increased, and showed very good agreement with the results of NBTS. In conclusion, the a-SZTO TFT showed the highest electrical performance as well as excellent stability at the annealing temperature of 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945–2986 (2012)

    Article  Google Scholar 

  2. T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, M. Yoshida, H. Ishii, M. Kakegawa, J. SID 15, 17–22 (2007)

    Google Scholar 

  3. J.K. Jeong, Semicond. Sci. Technol. 26, 034008 (2011)

    Article  Google Scholar 

  4. H. Hosono, M. Yasukawa, H. Kawazoe, J. Non-Cryst, Solids 203, 334–344 (1996)

    Google Scholar 

  5. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  Google Scholar 

  6. T. Kamiya, K. Nomura, H. Hosono, J. Disp. Technol. 5, 462 (2009)

    Article  Google Scholar 

  7. T. Kamiya, K. Nomura, H. Hosono, J. Disp. Technol. 5, 273 (2009)

    Article  Google Scholar 

  8. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005)

    Article  Google Scholar 

  9. W.B. Jackson, R.L. Hoffman, G.S. Herman, Appl. Phys. Lett. 87, 193503 (2005)

    Article  Google Scholar 

  10. D.-H. Cho, S. Yang, C. Byun, J. Shin, M.K. Ryu, S.-H.K. Park, C.-S. Hwang, S.M. Chung, W.-S. Cheong, S.M. Yoon, H.-Y. Chu, Appl. Phys. Lett. 93, 142111 (2008)

    Article  Google Scholar 

  11. Y.S. Rim, D.L. Kim, W.H. Jeong, H.J. Kim, Appl. Phys. Lett. 97, 233502 (2010)

    Article  Google Scholar 

  12. E. Chong, I. Kang, C.H. Park, S.Y. Lee, Thin Solid Films 534, 609 (2013)

    Article  Google Scholar 

  13. J.Y. Choi, S.S. Kim, S.Y. Lee, Appl. Phys. Lett. 100, 022109 (2012)

    Article  Google Scholar 

  14. J.H. Jeong, H.W. Yang, J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, J. Song, C.S. Hwang, Electrochem. Solid State Lett. 11(6), H157–H159 (2008)

    Article  Google Scholar 

  15. P.-B. Shea, J. Kanicki, J. Appl. Phys. 98, 014503 (2005)

    Article  Google Scholar 

  16. J.M. Lee, I.T. Cho, J.H. Lee, H.I. Kwon, Appl. Phys. Lett. 93, 093504 (2008)

    Article  Google Scholar 

  17. M.Y. Tsai, T.C. Chang, A.K. Chu, T.Y. Hsieh, T.C. Chen, K.Y. Lin, W.W. Tsai, W.J. Chiang, J.Y. Yan, Appl. Phys. Lett. 103, 012101 (2013)

    Article  Google Scholar 

  18. R.B.M. Cross, M.M.D. Souza, Appl. Phys. Lett. 89, 263513 (2006)

    Article  Google Scholar 

  19. C.P.T. Nguyen, T.T. Trinh, J. Raja, A.H.T. Le, Y.-J. Lee, V.A. Dao, J. Yi, Mater. Sci. Semicond. Process. 39, 649–653 (2015)

    Article  Google Scholar 

  20. W.-S. Kim, Y.-K. Moon, K.-T. Kim, B.-D. Ahn, J.-W. Park, Thin Solid Films 518, 6357–6360 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yeol Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, J.M., Lee, S.Y. Effect of Annealing Temperature on Enhancement of Electrical Performance and Stability of Amorphous SiZnSnO Thin Film Transistors. Trans. Electr. Electron. Mater. 19, 47–51 (2018). https://doi.org/10.1007/s42341-018-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0012-1

Keywords

Navigation