Skip to main content
Log in

3D-Printed Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Water Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have proposed an ultra-broadband dielectric-resonator-based microwave absorber with a water substrate. A dielectric resonator, which comprises two stacking cubic cavities and one cross-shaped cavity, was filled with water to provide ultra-broadband microwave absorption. The simulation results show that the absorptivity of the proposed absorber is greater than 90% in the frequency range from 16.52 GHz to the upper microwave frequency band of 100.00 GHz, with the relative absorption bandwidth of 143.3%. Moreover, the absorber is insensitive to wave polarization and has high absorptivity over a wide frequency range under oblique incidences. Thanks to the 3D-printing technology, the proposed microwave absorber can be fabricated precisely and cost-effectively. The experimental results demonstrated that the structure is capable of broadband absorption and wide-incident-angle stability. The proposed design of ultra-broadband absorbers has much potential in the fields of electromagnetic shielding and stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

The code used during the current study is available from the corresponding author on reasonable request.

References

  1. Y.H. Zhang, and W. Jiang, Development of Morden stealth technology. J. Electron. Sci. Technol. 29, 194 (2016).

    Google Scholar 

  2. S. Narayan, J. Sreeja, V.V. Surya, B. Sangeetha, and R.U. Nair, Radar absorbing structures using frequency selective surfaces: trends and perspectives. J. Electron. Mater. 49, 1728 (2020).

    Article  CAS  Google Scholar 

  3. L.H. He, L.W. Deng, H. Luo, J. He, Y.H. Li, Y.C. Xu, and H.X. Huang, Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial. Chin. Phys. B 27, 127801 (2018).

    Article  CAS  Google Scholar 

  4. S.Q. Yan, S. Liu, J. He, H. Luo, L.H. He, Y.H. Li, and S.X. Huang, Effects of Co2O3 on electromagnetic properties of NiCuZn ferrites. J. Magn. Magn. Mater. 452, 349 (2018).

    Article  CAS  Google Scholar 

  5. D.X. Ye, Z.Y. Wang, K.W. Xu, H. Li, J.T. Huangfu, Z. Wang, and L.X. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013).

    Article  Google Scholar 

  6. T.W. Deng, Z.W. Li, M.J. Chua, and Z.N. Chen, Broadband and ultrathin frequency-dispersive metamaterial screen for reflectivity reduction. IEEE Antennas Propag. Mag. 63, 4156 (2015).

    Article  Google Scholar 

  7. Z.W. Peng, J.Y. Hwang, and M. Andriese, Absorber impedance matching in microwave heating. Appl. Phys. Express 5, 077301 (2012).

    Article  Google Scholar 

  8. Y.K. Zhong, S.M. Fu, N.P. Ju, M.H. Tu, B.R. Chen, and A. Lin, Fully planarized perfect metamaterial absorbers with no photonic nanostructures. IEEE Photon. J 8, 2200109 (2016).

    Google Scholar 

  9. Y.H. Liu, S. Gu, C.R. Luo, and X.P. Zhao, Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108, 19 (2012).

    Article  CAS  Google Scholar 

  10. J.F. Chen, Z.Y. Hu, G.D. Wang, X.T. Huang, S.M. Wang, X.W. Hu, and M.H. Liu, High-impedance surface-based broadband absorbers with interference theory. IEEE Trans. Antennas Propag. 63, 4367 (2015).

    Article  Google Scholar 

  11. L.L. Wang, S.B. Liu, H.F. Zhang, X.K. Kong, and L.L. Liu, High-impedance surface-based flexible broadband absorber. J. Electromagn. Waves Appl. 31, 1216 (2017).

    Article  Google Scholar 

  12. X.H. Wang, F. Chen, and E. Semouchkina, Implementation of low scattering microwave cloaking by all-dielectric metamaterials. IEEE Microw. Wirel. Compon. Lett. 23, 63 (2013).

    Article  CAS  Google Scholar 

  13. S. Jahani, and Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23 (2016).

    Article  CAS  Google Scholar 

  14. J. Hu, T.T. Lang, Z. Hong, C.Y. Shen, and G.H. Shi, Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials. J. Light. Technol. 36, 2083 (2018).

    Article  CAS  Google Scholar 

  15. H. Zhang, F. Ling, H. Wang, Y. Zhang, and B. Zhang, A water hybrid graphene metamaterial absorber with broadband absorption. Opt. Commun. 463, 125394 (2020).

    Article  CAS  Google Scholar 

  16. A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, S.Y. Kivshar, and A.V. Lavrinenko, Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep. 5, 13535 (2015).

    Article  CAS  Google Scholar 

  17. Y.F. Zhou, Z.Y. Shen, J. Wu, Y. Zhang, S.Q. Huang, and H.L. Yang, Design of ultra-wideband and near-unity absorption water-based metamaterial absorber. Appl. Phys. B 126, 52 (2020).

    Article  CAS  Google Scholar 

  18. Z.Y. Shen, X.J. Huang, H.L. Yang, T.Y. Xiang, C.W. Wang, Z.T. Yu, and J. Wu, An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J. Appl. Phys. 123, 225106 (2018).

    Article  Google Scholar 

  19. Z. Wu, X.Q. Chen, Z.L. Zhang, L.Y. Heng, S. Wang, and Y.H. Zou, Design and optimization of a flexible water-based microwave absorbing metamaterial. Appl. Phys. Express 12, 057003 (2019).

    Article  CAS  Google Scholar 

  20. X.F. Zhang, D.J. Zhang, Y.J. Fu, S.H. Li, Y. Wei, K.J. Chen, X. Wang, and S.L. Zhuang, 3D printed swastika shape ultra-broadband water-based microwave absorber. IEEE Antennas Wirel. Propag. Lett. 19, 821 (2020).

    Article  Google Scholar 

  21. X.J. Huang, H.L. Yang, Z.Y. Shen, J. Chen, H.I. Lin, and Z.T. Yu, Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J. Phys. D 50, 385304 (2017).

    Article  Google Scholar 

  22. Z.H. Wang, and P.C. Zhang, Microwave absorption by and scattering from mixed ice and liquid water spheres. J. Quant. Spectrosc. Radiat. Transf. 83, 423 (2004).

    Article  CAS  Google Scholar 

  23. S.R. Li, Z.Y. Shen, H.I. Yang, Y.J. Liu, Y.J. Yang, and L.N. Hua, Ultra-wideband transmissive water-based metamaterial absorber with wide angle incidence and polarization insensitivity. Plasmonics 16, 1269 (2021).

    Article  CAS  Google Scholar 

  24. Y.F. Zhou, Z.Y. Shen, X.J. Huang, J. Wu, Y.J. Li, S.Q. Huang, and H.L. Yang, Ultra-wideband water-based metamaterial absorber with temperature insensitivity. Mod. Phys. Lett. 383, 2739 (2019).

    Article  CAS  Google Scholar 

  25. J.W. Xie, W.R. Zhu, I.D. Rukhlenko, F.J. Xiao, C. He, J.P. Geng, X.L. Liang, R.H. Jin, and M. Premaratne, Water metamaterial for ultra-broadband and wide-angle absorption. Opt. Express 26, 5052 (2018).

    Article  CAS  Google Scholar 

  26. J.W. Xie, S. Quader, F.J. Xiao, C. He, X.L. Liang, J.P. Geng, R.H. Jin, W.R. Zhu, and I.D. Rukhlenko, Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wirel. Propag. Lett. 18, 536 (2019).

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (Grant No. 61871171), Aeronautical Science Foundation of China (Grant No. 2020Z0560P4001), and Fundamental Research Funds for the Central Universities of China (Grant No. JD2020JGPY0012)

Author information

Authors and Affiliations

Authors

Contributions

GSD and FC conceived the concept. WQC and ZCY performed the simulation and experiment. JY analyzed the data. GSD and ZPY guided the entire work. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhiping Yin.

Ethics declarations

Ethics Approval

The authors have followed the ethical principles and accurate references to scientific sources in the original paper.

Conflict of interest

The authors declare no competing interests.

Consent to Participate

All the authors have contributed to this article.

Consent for Publication

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Chen, W., Yu, Z. et al. 3D-Printed Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Water Substrate. J. Electron. Mater. 51, 2221–2227 (2022). https://doi.org/10.1007/s11664-022-09439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09439-4

Keywords

Navigation