Skip to main content
Log in

Synthesis of Highly Ordered TiO2 Nanorods on a Titanium Substrate Using an Optimized Hydrothermal Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, highly stable and well-oriented one-dimensional (1D) TiO2 nanorods were grown over a conductive titanium (Ti) substrate by optimizing various physical and chemical parameters involved in the hydrothermal method. Previous works have reported extensively on the synthesis of 1D TiO2 nanorods on fluorine-doped tin oxide-coated glass substrates using the hydrothermal method. However, glass substrates suffer from poor integration, compatibility, and stability issues when implemented in device applications. To overcome the challenges with glass substrates, in the current study, we propose an optimized hydrothermal route to synthesize highly ordered 1D TiO2 nanorods on a metal (Ti) substrate. The structural and morphological parameters of the nanostructures, including crystal phase, length, diameter, and density of nanorods, were studied with the help of field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction spectroscopy, and photoluminescence spectroscopy. The morphology of the nanostructures was varied by changing the chemical composition of the mother solution and physical parameters of time and temperature of the reactions involved during hydrothermal synthesis. It was shown that by optimizing the reaction parameters, multi-crystalline three-dimensional TiO2 nanoflowers could be transformed to single-crystalline 1D TiO2 nanorods. One-dimensional TiO2 nanorods on the Ti substrate were then implemented in a metal–insulator–metal (MIM) type of device (Au/TiO2 nanorods/Ti) and used for ethanol sensing. At 100°C, the sensor showed the maximum response magnitude of 61% towards 300 ppm of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Wang, W. Zeng, H. Zhang, Y. Li, W. Chen, and Z. Wang, Synthesis and growth mechanism of CuO nanostructures and their gas sensing properties. J. Mater. Sci. Mater. Electron. 25, 2041 (2014).

    Article  CAS  Google Scholar 

  2. R.S. Ganesh, G.K. Mani, R. Elayaraja, E. Durgadevi, M. Navaneethan, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, and Y. Hayakawa, Surfactant free controllable synthesis of 2D–1D ZnO hierarchical nanostructure and its gas sensing properties. Appl. Surf. Sci. 449, 838 (2018).

    Article  CAS  Google Scholar 

  3. L.L. Wang, L.P. Kang, H.Y. Wang, Z.P. Chen, and X.J. Li, Capacitive humidity sensitivity of SnO2: Sn thin film grown on silicon nanoporous pillar array. Sens. Actuators B Chem. 229, 513 (2016).

    Article  CAS  Google Scholar 

  4. X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires. Chem. Rev. 19, 9346 (2014).

    Article  Google Scholar 

  5. A. Asthana, T. Shokuhfar, Q. Gao, P. Heiden, C. Friedrich, and R.S. Yassar, A study on the modulation of the electrical transport by mechanical straining of individual titanium dioxide nanotube. Appl. Phys. Lett. 97, 072107 (2010).

    Article  Google Scholar 

  6. P. Das, B. Mondai, and K. Mukherjee, Chemi-resistive response of rutile titania nano-particles towards isopropanol and formaldehyde: a correlation with the volatility and chemical reactivity of vapors. Mater. Res. Express 4, 015503 (2017).

    Article  Google Scholar 

  7. H. Liu, W. Jiang, L. Yin, Y. Shi, B. Chen, W. Jiang, and Y. Ding, Enhanced photovoltaic performance of dye-sensitized solar cells with TiO2 micro/nano-structures as light scattering layer. J. Mater. Sci. Mater. Electron. 27, 5452 (2016).

    Article  CAS  Google Scholar 

  8. H. Fu, X. Yang, X. An, W. Fan, X. Jiang, and A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens Actuators B Chem. 252, 103 (2017).

    Article  CAS  Google Scholar 

  9. J. Zhou, G. Tian, Y. Chen, J.Q. Wang, X. Cao, Y. Shi, and K. Pan, Synthesis of hierarchical TiO2 nanoflower with anatase-rutile heterojunction as Ag support for efficient visible-light photocatalytic activity. Dalt. Trans. 42, 11242 (2013).

    Article  CAS  Google Scholar 

  10. Z.P. Tshabalala, K. Shingange, B.P. Dhonge, O.M. Ntwaeaborwa, G.H. Mhlongo, and D.E. Motaung, Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: Detailed study on the annealing temperature, Sensors Actuators. B Chem. 238, 402 (2017).

    CAS  Google Scholar 

  11. A. Haidry, A. Ebach-Stahl, and B. Saruhan, Effect of Pt/TiO2 interface on room temperature hydrogen sensing performance of memristor type Pt/TiO2/Pt structure. Sens. Actuators B Chem. 253, 1043 (2017).

    Article  CAS  Google Scholar 

  12. X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells. Phys. Chem. Chem. Phys. 19, 4956 (2017).

    Article  CAS  Google Scholar 

  13. A. Hazra and P. Bhattacharyya, Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Devices 61, 3483 (2014).

    Article  CAS  Google Scholar 

  14. T.J. Macdonald, F. Ambroz, M. Batmunkh, Y. Li, D. Kim, C. Contini, R. Poduval, H. Liu, J.G. Shapter, I. Papakonstantinou, and I.P. Parkin, TiO2 nanofiber photoelectrochemical cells loaded with sub-12 nm AuNPs: size dependent performance evaluation. Mater. Today Energy 9, 254 (2018).

    Article  Google Scholar 

  15. X. Li, X. Li, J. Wang, and S. Lin, Highly sensitive and selective room temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actuators B Chem. 219, 158 (2015).

    Article  CAS  Google Scholar 

  16. S. Radice, P. Kern, H. Dietsch, S. Mischler, and J. Michler, Methods for functionalization of microsized polystyrene beads with titania nanoparticles for cathodic electrophoretic deposition. J. Colloid Interface Sci. 318, 264 (2008).

    Article  CAS  Google Scholar 

  17. C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, and N. Liu, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 6, 12841 (2010).

    Article  Google Scholar 

  18. E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, Growth of sub micrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004).

    Article  CAS  Google Scholar 

  19. A.Q.D. Faisal, Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J. Mater. Sci. Mater. Electron. 26, 317 (2014).

    Article  Google Scholar 

  20. J. Akilavasan, K. Wijeratne, H. Moutinho, M. Jassim, A.R.M. Alamoud, R.M.G. Rajapaksed, and J. Bandara, Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices. J. Mater. Chem. A 1, 5377 (2013).

    Article  CAS  Google Scholar 

  21. S.M. Mokhtar, M.K. Ahmad, C.F. Soon, N. Nafarizal, A.B. Faridah, A.B. Suriani, M.H. Mamat, M. Shimomura, and K. Murakami, Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Optik 154, 510 (2018).

    Article  CAS  Google Scholar 

  22. S. Kumar, T. Vats, S.N. Sharma, and J. Kumar, Investigation of annealing effects on TiO2 nanotubes synthesized by a hydrothermal method for hybrid solar cells. Optik 171, 492 (2018).

    Article  CAS  Google Scholar 

  23. J. Su and L. Guo, High aspect ratio TiO2 nanowires tailored in concentrated HCl hydrothermal condition for photoelectrochemical water splitting. RSC Adv. 5, 53012 (2015).

    Article  CAS  Google Scholar 

  24. M. Choi, Z. Zhang, J. Chen, Z. Deng, and K. Yong, Morphological optimization of large-area arrays of TiO2 nanowires & nanotubes for enhanced cold field emission: experiment and theory. RSC Adv. 5, 19470 (2015).

    Article  CAS  Google Scholar 

  25. B. Liu and E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 25, 3985 (2009).

    Article  Google Scholar 

  26. C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, and H. Zhang, UV sensor based on TiO2 nanorod arrays on FTO thin film. Sens. Actuators B Chem. 156, 114 (2011).

    Article  CAS  Google Scholar 

  27. Q. Mu, Y. Li, H. Wang, and Q. Zhang, Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings. J. Colloid Interface Sci. 365, 308 (2012).

    Article  CAS  Google Scholar 

  28. D. Tang, K. Cheng, W. Weng, C. Song, P. Du, G. Shen, and G. Han, TiO2 nanorod films grown on Si wafers by a nanodot-assisted hydrothermal growth. Thin Solid Films 519, 7644 (2011).

    Article  CAS  Google Scholar 

  29. N.D. Hoa, V.V. Quang, D. Kim, and N.V. Hieu, General and scalable route to synthesize nanowire-structured semiconducting metal oxides for gas-sensor applications. J. Alloys Compd. 549, 260 (2013).

    Article  Google Scholar 

  30. S. Joo, I. Muto, and N. Hara, Hydrogen gas sensor using Pt- and Pd-added anodic TiO2 nanotube films. J. Electrochem. Soc. 157, J221 (2010).

    Article  CAS  Google Scholar 

  31. S. Ma, R. Li, C. Lv, W. Xu, and X. Gou, Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. J. Hazard. Mater. 192, 730 (2011).

    Article  CAS  Google Scholar 

  32. L. Dong, K. Cheng, W. Weng, C. Song, P. Du, G. Shen, and G. Han, Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates. Thin Sold Films 519, 4634 (2011).

    Article  CAS  Google Scholar 

  33. N.K.A. Hamed, N.S. Khalid, F.I. Mohd Fazli, M.L. Mohd Napi, N. Nayan, and M.K. Ahmad, Influence of hydrochloric acid volume on the growth of titanium dioxide (TiO2) nanostructures by hydrothermal method. Sains Malays. 45, 1669 (2016).

    Google Scholar 

  34. J. Nayak, K. Prabakar, J.W. Park, and H. Kim, Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films. Electrochem. Acta 65, 44 (2012).

    Article  CAS  Google Scholar 

  35. A. Hazra, S. Das, J. Kanungo, C.K. Sarkar, and S. Basu, Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B 183, 87 (2013).

    Article  CAS  Google Scholar 

  36. A. Hazra, S. Das, J. Kanungo, E. Bontempi, C.K. Sarkar, P. Bhattacharyya, and S. Basu, Influence of temperature, voltage and hydrogen on the reversible transition of electrical conductivity in sol-gel grown nanocrystalline TiO2 thin film. J. Mater. Sci. Mater. Electron. 24, 1658 (2013).

    Article  CAS  Google Scholar 

  37. P. Bindra and A. Hazra, Electroless deposition of Pd/Pt nanoparticles on electrochemically grown TiO2 nanotubes for ppb level sensing of ethanol at room temperature. Analyst 146, 1880 (2021).

    Article  CAS  Google Scholar 

  38. R. Bhardwaj, V. Selamneni, U.N. Thakur, P. Sahatiya, and A. Hazra, Detection and discrimination of volatile organic compounds by noble metals nanoparticle functionalized MoS2 coated biodegradable paper sensors. New J. Chem. 44, 16613 (2020).

    Article  CAS  Google Scholar 

  39. T. Gakhar and A. Hazra, Oxygen vacancy modulation of titania nanotubesby cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds. Nanoscale 12, 9082 (2020).

    Article  CAS  Google Scholar 

  40. P. Bindra and A. Hazra, Selective detection of organic vapors using TiO2 nanotubes based single sensor at room temperature. Sens.Actuators B 290, 684 (2019).

    Article  CAS  Google Scholar 

  41. A. Hazra, Surface potential based approach to estimate bias dependent sensitivity of 1-D metal oxide resistive gas sensors. IEEE Sens. J. 20, 5766 (2020).

    Article  CAS  Google Scholar 

  42. P. Bindra, S. Gangopadhyay, and A. Hazra, Au/TiO2 nanotubes/Ti-based solid-state vapor sensor: efficient sensing in resistive and capacitive modes. IEEE Trans. Electron Devices 65, 1918 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Department of Biotechnology Grant (Letter No. BT/PR28727/NNT/28/1569/ 2018) and SPARC Grant (SPARC/2018-2019/P1394/SL), Govt. of India. The authors acknowledge the use of a DST-FIST-sponsored XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bibhas R. Sarkar or Arnab Hazra.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindra, P., Mittal, H., Sarkar, B.R. et al. Synthesis of Highly Ordered TiO2 Nanorods on a Titanium Substrate Using an Optimized Hydrothermal Method. J. Electron. Mater. 51, 1707–1716 (2022). https://doi.org/10.1007/s11664-022-09436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09436-7

Keywords

Navigation