Skip to main content
Log in

Charge Carrier Mobility of 1,6-Dibromopyrene Single Crystal Grown by Solution Method on Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Large elongated single crystals (2.91 mm × 97 μm) of 1,6-dibromopyrene were successfully obtained from solution using the slow evaporation method. Their carrier mobility was obtained via current–voltage characteristics of bottom-gate bottom-contact-type field-effect transistors. In these devices, the longitudinal direction of each crystal was parallel or perpendicular to the conductive channel. The highest mobility was 6.0 × 10−4 cm2 V−1 s−1 and 2.2 × 10−3 cm2 V−1 s−1 in the linear and saturation region, respectively, when the electric current flowed across the crystal’s longitudinal direction. The emission strength ratio and mobility ratio between the two longitudinal directions (parallel and perpendicular to the conductive channel, respectively) were 3.1 and 2.2. X-ray diffraction measurements suggested that both the emission strength and mobility are larger in the transverse intermolecular contact direction than in the stacking direction. The mobilities in the linear region were tentatively corrected by subtracting the contributions of charge injection barriers and were estimated to be 2.1–2.9 times larger than the uncorrected ones. The results of this study suggest that bromine substitution is one of the effective methods to modify the optical properties and improve the solution processability of organic semiconductor materials while maintaining the carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Coropceanu, J. Cornil, D.A.S. Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007).

    Article  CAS  Google Scholar 

  2. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208 (2012).

    Article  CAS  Google Scholar 

  3. C. Wang, H. Dong, L. Jiang, and W. Hu, Organic semiconductor crystals. Chem. Soc. Rev. 47, 422 (2018).

    Article  CAS  Google Scholar 

  4. H. Jiang, and W. Hu, The emergence of organic single-crystal electronics. Angew. Chem. Int. Ed. 59, 1408 (2020).

    Article  CAS  Google Scholar 

  5. D. Braga, and G. Horowitz, High-performance organic field-effect transistors. Adv. Mater. 21, 1473 (2009).

    Article  CAS  Google Scholar 

  6. S. Tiwari, and N.C. Greenham, Charge mobility measurement techniques in organic semiconductors. Opt. Quant. Electron. 41, 69 (2009).

    Article  CAS  Google Scholar 

  7. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 90, 102120 (2007).

    Article  Google Scholar 

  8. X. Zhang, H. Dong, and W. Hu, Organic semiconductor single crystals for electronics. Adv. Mater. 30, 1801048 (2018).

    Article  Google Scholar 

  9. M. Ashizawa, K. Yamada, A. Fukaya, R. Kato, K. Hara, and J. Takeya, Effect of molecular packing on field-effect performance of single crystals of thienyl-substituted pyrenes. Chem. Mater. 20, 4883 (2008).

    Article  CAS  Google Scholar 

  10. H. Ju, K. Wang, J. Zhang, H. Geng, Z. Liu, G. Zhang, Y. Zhao, and D. Zhang, 1,6- and 2,7-trans-β-styryl substituted pyrenes exhibiting both emissive and semiconducting properties in the solid state. Chem. Mater. 29, 3580 (2017).

    Article  CAS  Google Scholar 

  11. M.L. Tang, and Z. Bao, Halogenated materials as organic semiconductors. Chem. Mater. 23, 446 (2011).

    Article  CAS  Google Scholar 

  12. X. Chi, D. Li, H. Zhang, Y. Chen, V. Garcia, C. Garcia, and T. Siegrist, 5,6,11,12-Tetrachlorotetracene, a tetracene derivative with π-stacking structure: the synthesis, crystal structure and transistor properties. Org. Electron. 9, 234 (2008).

    Article  CAS  Google Scholar 

  13. J. Mei, Y. Diao, A.L. Appleton, L. Fang, and Z. Bao, Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724 (2013).

    Article  CAS  Google Scholar 

  14. C. Sutton, C. Risko, and J.-L. Brédas, Noncovalent intermolecular interactions in organic electronic materials: implications for the molecular packing vs electronic properties of acenes. Chem. Mater. 28, 3 (2016).

    Article  CAS  Google Scholar 

  15. C.-T. Chien, M. Watanabe, and T.J. Chow, The synthesis of 2-halopentacenes and their charge transport properties. Tetrahedron 71, 1668 (2015).

    Article  CAS  Google Scholar 

  16. T. Okamoto, M.L. Senatore, M.-M. Ling, A.B. Mallik, M.L. Tang, and Z. Bao, Synthesis, characterization, and field-effect transistor performance of pentacene derivatives. Adv. Mater. 19, 3381 (2007).

    Article  CAS  Google Scholar 

  17. T. Okamoto, C. Reese, M.L. Senatore, M.L. Tang, Y. Jiang, S.R. Parkin, and Z. Bao, 2,9-Dibromopentacene: Synthesis and the role of substituent and symmetry on solid-state order. Synth. Met. 160, 2447 (2010).

    Article  CAS  Google Scholar 

  18. M. He, J. Li, A. Tandia, M. Sorensen, F. Zhang, H.H. Fong, V.A. Pozdin, D.-M. Smilgies, and G.G. Malliaras, Importance of C2 symmetry for the device performance of a newly synthesized family of fused-ring thiophenes. Chem. Mater. 22, 2770 (2010).

    Article  CAS  Google Scholar 

  19. C. Lin, S. Li, W. Zhang, C. Shao, and Z. Yang, Effect of bromine substitution on the ion migration and optical absorption in MAPbI3 perovskite solar cells: the first-principles study. ACS Appl. Energy Mater. 1, 1374 (2018).

    Article  CAS  Google Scholar 

  20. C. Reese, and Z. Bao, High-resolution measurement of the anisotropy of charge transport in single crystals. Adv. Mater. 19, 4535 (2007).

    Article  CAS  Google Scholar 

  21. R.J. Tseng, R. Chan, V.C. Tung, and Y. Yang, Anisotropy in organic single-crystal photovoltaic characteristics. Adv. Mater. 20, 435 (2008).

    Article  CAS  Google Scholar 

  22. K. Sugahara, T. Nakagawa, R. Hirase, T. Katagiri, Y. Inada, T. Yamao, and S. Hotta, Growth of alkyl-monosubstituted thiophene/phenylene co-oligomer crystals and their device application. Jpn. J. Appl. Phys. 57, 04FL02 (2018).

    Article  Google Scholar 

  23. I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, and R. Taylor, New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Cryst. B 58, 389 (2002).

    Article  Google Scholar 

  24. Gaussian 16, Revision C.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, (Gaussian, Inc., Wallingford, 2016)

  25. M.K. Chaudhuri, and S.C. Ganguly, Polarized absorption and fluorescence spectra of crystalline pyrene. J. Phys. C Solid State. Phys. 3, 1791 (1970).

    Article  CAS  Google Scholar 

  26. C. Lee, D. Jones, J.M. White, CCDC 2016113: Experimental Crystal Structure Determination (2020). https://doi.org/10.5517/ccdc.csd.cc25nxxp

  27. Y. Guo, L. Xu, H. Liu, Y. Li, C.-M. Che, and Y. Li, Self-assembly of functional molecules into 1D crystalline nanostructures. Adv. Mater. 27, 985 (2015).

    Article  CAS  Google Scholar 

  28. S. Tavazzi, L. Raimondo, L. Silvestri, P. Spearman, A. Camposeo, M. Polo, and D. Pisignano, Dielectric tensor of tetracene single crystals: the effect of anisotropy on polarized absorption and emission spectra. J. Chem. Phys. 128, 154709 (2008).

    Article  CAS  Google Scholar 

  29. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, and M.S. Shur, An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100, 024509 (2006).

    Article  Google Scholar 

  30. M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, On the origin of contact resistances of organic thin film transistors. Adv. Mater. 24, 4005 (2012).

    Article  CAS  Google Scholar 

  31. P. Mittal, B. Kumar, Y.S. Negi, B.K. Kaushik, and R.K. Singh, Channel length variation effect on performance parameters of organic field effect transistors. Microelectron. J. 43, 985 (2012).

    Article  Google Scholar 

  32. O. Simonetti, L. Giraudet, T. Maurel, J.-L. Nicolas, and A. Belkhir, Organic transistor model with nonlinear injection: effects of uneven source contact on apparent mobility and threshold voltage. Org. Electron. 11, 1381 (2010).

    Article  CAS  Google Scholar 

  33. T. Yamao, S. Ota, T. Miki, S. Hotta, and R. Azumi, Improved sublimation growth of singe crystals of thiophene/phenylene co-oligomers. Thin Solid Films 516, 2527 (2008).

    Article  CAS  Google Scholar 

  34. S. Hotta, T. Yamao, S.Z. Bisri, T. Takenobu, and Y. Iwasa, Organic single-crystal light-emitting field-effect transistors. J. Mater. Chem. C 2, 965 (2014).

    Article  CAS  Google Scholar 

  35. T. Makita, R. Nakamura, M. Sasaki, S. Kumagai, T. Okamoto, S. Watanabe, and J. Takeya, Electroless-plated gold contacts for high-performance, low contact resistance organic thin film transistors. Adv. Funct. Mater. 30, 2003977 (2020).

    Article  CAS  Google Scholar 

  36. A. Suzuki, H. Inokuchi, and Y. Maruyama, Charge-carrier drift mobility in pyrene single crystals. Bull. Chem. Soc. Jpn. 49, 3347 (1976).

    Article  CAS  Google Scholar 

  37. R.Y. Lai, J.J. Fleming, B.L. Merner, R.J. Vermeij, G.J. Bodwell, and A.J. Bard, Electrogenerated chemiluminescence. 74. Photophysical, electrochemical, and electrogenerated chemiluminescent studies of selected nonplanar pyrenophanes. J. Phys. Chem. A 108, 376 (2004).

    Article  CAS  Google Scholar 

  38. A.A. Isse, G. Berzi, L. Falciola, M. Rossi, P.R. Mussini, and A. Gennaro, Electrocatalysis and electron transfer mechanisms in the reduction of organic halides at Ag. J. Appl. Electrochem. 39, 2217 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Early-Career Scientists Grant No. 20K15128 from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kojiro Naito or Yuhi Inada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naito, K., Inada, Y., Sakurai, T. et al. Charge Carrier Mobility of 1,6-Dibromopyrene Single Crystal Grown by Solution Method on Substrate. J. Electron. Mater. 51, 813–821 (2022). https://doi.org/10.1007/s11664-021-09345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09345-1

Keywords

Navigation