Skip to main content
Log in

Morphological, Structural and Optical Properties of Fe-Doped WO3 Films Deposited by Spray-Pyrolysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study reports on the synthesis of Fe-doped tungsten trioxide (WO3:Fe) thin films using spray-pyrolysis technique. The films were deposited on glass substrates at 350°C and Fe-doping was achieved using granular iron in an acidic medium with \(\frac{{\left[ {{\text{Fe}}} \right]}}{\left[ W \right]}\) = 1, 3 and 5 % at. The films were heat-treated with an extended thermal treatment at 400°C and 500°C for 4 h, in order to allow both crystallization and dopant diffusion into the WO3 matrix. The effect of Fe-doping and heat-treatment on the morphological, structural and optical properties of these films was investigated. The results revealed that Fe-doping has a significant impact on the morphology of the films depending on its concentration. In addition, it was shown that the thermal treatment improves the growth of the crystallites and enhances the roughness of the surface. Grazing incidence X-ray diffraction analysis (GIXRD) confirmed the polycrystalline character of the films with a monoclinic structure (ICDD N° 89-4476, P21/c). The structural parameters were found to be both doping- and heat-treatment-dependent. Energy dispersive spectrometry (EDS) depicted homogeneous doping and confirmed the presence of W, O and Fe. The films display a good optical transmittance over the visible region sensitive to Fe-doping and thermal treatment. Moreover, the films exhibit both direct and indirect electronic transitions, where the energy of the indirect electronic allowed transition shows a redshift in all the samples due to Fe-doping. Therefore, the width of the tail states energy increases inferring the influence of disorder and the introduction of defect states within the band gap region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.S. Kolhe, P. Mutadak, N. Maiti, and K.M. Sonawane, Sens. Actuators A 304, 111877 (2020).

    Article  CAS  Google Scholar 

  2. D. Komaraiah, E. Radha, J. Sivakumar, M.R. Reddy, and R. Sayanna, Opt. Mater. 108, 110401 (2020).

    Article  CAS  Google Scholar 

  3. S.K. Muhammad, E.S. Hassan, K.Y. Qader, K.H. Abass, S.S. Chiad, and N.F. Habubi, Nano Biomed. Eng 12, 67 (2020).

    Article  CAS  Google Scholar 

  4. A.M. Mostafa, and E.A. Mwafy, J. Mol. Struct. 1221, 128872 (2020).

    Article  CAS  Google Scholar 

  5. Q. Wang, H. Fu, J. Ding, C. Yang, and S. Wang, Opt. Laser Technol. 125, 106036 (2020).

    Article  CAS  Google Scholar 

  6. A.K. Mohamedkhair, Q.A. Drmosh, M. Qamar, and Z.H. Yamani, Catalysts 11, 381 (2021).

    Article  CAS  Google Scholar 

  7. Y. Kimura, K. Ibano, K. Uehata, I. Hirai, H.T. Lee, and Y. Ueda, Appl. Surf. Sci. 532, 147274 (2020).

    Article  CAS  Google Scholar 

  8. S. Hajirnis, P. Chavan, V. Manapure, A. Patil, A. Khan, B.S. Nadekar, P.S. More, and A.V. Kadam, Mater. Res. Express 8, 095503 (2021).

    Article  CAS  Google Scholar 

  9. F.J. García-García, J. Mosa, A.R. Gonzalez-Elipe, and M. Aparicio, Electrochim. Acta 321, 134669 (2019).

    Article  Google Scholar 

  10. Y. Zhao, X. Zhang, X. Chen, W. Li, L. Wang, F. Ren, J. Zhao, F. Endres, Y. Li, and A.C.S. Sustain, Chem. Eng. 8, 11658 (2020).

    CAS  Google Scholar 

  11. A. Abareshi, and H. Haratizadeh, Iran. J. Phys. Res. 16, 47 (2019).

    Google Scholar 

  12. D. Nunes, A.R. Fragoso, T. Freire, M. Matias, A.C. Marques, R.F.D.P. Martins, E. Fortunato, and A. Pimentel, Phys. Status Solidi - Rapid Res. Lett. 15, 2100196 (2021).

  13. Y.C. Liang, and C.W. Chang, Coatings 9, 90 (2019).

    Article  CAS  Google Scholar 

  14. M. Feng, Y. Liu, Z. Zhao, H. Huang, and Z. Peng, Mater. Res. Bull. 109, 168 (2019).

    Article  CAS  Google Scholar 

  15. J. Juodkazytė, M. Petrulevičienė, M. Parvin, B. Šebeka, I. Savickaja, V. Pakštas, A. Naujokaitis, J. Virkutis, and A. Gegeckas, J. Electroanal. Chem. 871, 114277 (2020).

    Article  Google Scholar 

  16. X. San, Y. Lu, G. Wang, D. Meng, X. Gong, and Q. Jin, Mater. Lett. 271, 127716 (2020).

    Article  CAS  Google Scholar 

  17. A. Rydosz, K. Dyndał, K. Kollbek, W. Andrysiewicz, M. Sitarz, and K. Marszałek, Vacuum 177, 109378 (2020).

    Article  CAS  Google Scholar 

  18. N. Matsunami, M. Sataka, and S. Okayasu, Nucl. Instrum. Methods Phys. Res. B 460, 185 (2019).

    Article  CAS  Google Scholar 

  19. L. Pan, Q. Han, Z. Dong, M. Wan, H. Zhu, Y. Li, and Y. Mai, Electrochim. Acta 328, 135107 (2019).

    Article  CAS  Google Scholar 

  20. R. Shakoury, A. Arman, S. Rezaee, A.G. Korpi, S. Kulesza, C. Luna, and M. Mardani, J. Mater. Sci. Mater. Electron. 32, 798 (2021).

    Article  CAS  Google Scholar 

  21. W. Li, X. Zhang, X. Chen, Y. Zhao, L. Wang, M. Chen, Z. Li, J. Zhao, and Y. Li, Electrochim. Acta 355, 136817 (2020).

    Article  CAS  Google Scholar 

  22. Y. Nishijima, K. Enomonoto, S. Okazaki, T. Arakawa, A. Balčytis, and S. Juodkazis, Appl. Surf. Sci. 534, 147568 (2020).

    Article  CAS  Google Scholar 

  23. L. S. Parshina, O. A. Novodvorsky, O. D. Khramova, A. A. Lotin and P. A. Shchur, in Journal of Physics: Conference Series 1164, 012003 (2019)

  24. C.M. Chang, Y.C. Chiang, M.H. Cheng, S.H. Lin, W.B. Jian, J.T. Chen, and K. Tsukagoshi, Sol. Energy Mater. Sol. Cells 223, 110960 (2021).

    Article  CAS  Google Scholar 

  25. Z. Han, J. Ren, J. Zhou, S. Zhang, Z. Zhang, L. Yang, and C. Yin, Int. J. Hydrog. Energy. 45, 7223 (2020).

    Article  CAS  Google Scholar 

  26. X. Li, Z. Li, W. He, H. Chen, X. Tang, Y. Chen, and Y. Chen, Coatings 11, 959 (2021).

    Article  CAS  Google Scholar 

  27. G. Mathankumar, P. Bharathi, M.K. Mohan, S. Harish, M. Navaneethan, J. Archana, and C. Muthamizhchelvan, Mater. Sci. Semicond. Process. 105, 104732 (2020).

    Article  CAS  Google Scholar 

  28. V. Saasa, T. Malwela, Y. Lemmer, M. Beukes, and B. Mwakikunga, Mater. Sci. Semicond. Process. 117, 105157 (2020).

    Article  CAS  Google Scholar 

  29. S. Buathet, K. Simalaotao, P. Reunchan, V. Vailikhit, P. Teesetsopon, D. Raknual, and A. Tubtimtae, Electrochim. Acta 341, 136049 (2020).

    Article  CAS  Google Scholar 

  30. M. Arshad, S. Ehtisham-ul-Haque, M. Bilal, N. Ahmad, A. Ahmad, M. Abbas, and M. Iqbal, Mater. Res. Express 7, 015407 (2020).

    Article  CAS  Google Scholar 

  31. H. Khan, M. Habib, A. Khan, and D.C. Boffito, J. Environ. Chem. Eng. 8, 104282 (2020).

    Article  CAS  Google Scholar 

  32. S.S. Hossain, K. Praveena, and P.K. Roy, J. Mater. Sci. Mater. Electron. 31, 15097 (2020).

    Article  CAS  Google Scholar 

  33. M. Kumar Mohanta, T. Kanta Sahu, S. Alam, and M. Qureshi, Chem. Asian J. 15, 3886 (2020).

    Article  CAS  Google Scholar 

  34. C. Qiu, Q. Meng, M. Panchal, C. Li, and B. Wu, Catal. Commun 147, 106149 (2020).

    Article  CAS  Google Scholar 

  35. M. Farooqi, M. Hasan, R. K. Srivastava, in Proc. Natl. Acad. Sci. India - Phys. Sci. 90 (2020), pp. 845–859

  36. Z. Li, X. Liu, M. Zhou, S. Zhang, S. Cao, G. Lei, C. Lou, and J. Zhang, J. Hazard. Mater. 415, 125757 (2021).

    Article  CAS  Google Scholar 

  37. N. Bashirom, and Q.L. Lee, Mater. Sci. Forum 1010, 405 (2020).

    Article  Google Scholar 

  38. D. Dong, J. Robichaud, and Y. Djaoued, Can. J. Chem. 99, 549 (2021).

    Article  CAS  Google Scholar 

  39. Y.S. Haiduk, A.A. Khort, M.A. Makhavikou, and A.A. Savitsky, Mod. Electron. Mater. 5, 115 (2019).

    Article  Google Scholar 

  40. S. M. Abd Al Hussan, N. A. Bakr, A. N. Abd, in IOP Conference Series: Materials Science and Engineering, vol. 928 (2020), pp. 072142

  41. S. Sivakumar, E. Manikandan, and B. Mahalakshmi, Vacuum 173, 109116 (2020).

    Article  CAS  Google Scholar 

  42. A.A. Akl, I.M. El Radaf, and A.S. Hassanien, Optik 227, 165837 (2021).

    Article  CAS  Google Scholar 

  43. V. Luxmi, and A. Kumar, Mater. Sci. Semicond. Process. 104, 104690 (2019).

    Article  CAS  Google Scholar 

  44. E.M. Ngigi, P.N. Nomngongo, and J.C. Ngila, Catal. Lett. 149, 49 (2019).

    Article  CAS  Google Scholar 

  45. C.T. Nguyen, T.P. Pham, T.L.A. Luu, X.S. Nguyen, T.T. Nguyen, H.L. Nguyen, and D.C. Nguyen, Ceram. Int. 46, 8711 (2020).

    Article  CAS  Google Scholar 

  46. M.M. Thwala, and L.N. Dlamini, Environ. Technol. 41, 2277 (2020).

    Article  CAS  Google Scholar 

  47. S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, J.L. Bhosale, J.H. Kim, P.S. Patil, and Z. Phys, Chem. 234, 1819 (2020).

    CAS  Google Scholar 

  48. I.A. Rodionov, A.S. Baburin, A.R. Gabidullin, S.S. Maklakov, S. Peters, I.A. Ryzhikov, and A.V. Andriyash, Sci. Rep. 9, 1 (2019).

    Article  CAS  Google Scholar 

  49. L. Xu, G. Zheng, F. Xian, and J. Su, Mater. Chem. Phys. 229, 215 (2019).

    Article  CAS  Google Scholar 

  50. A. Haichour, and N. Hamdadou, J. Nano- Electron. Phys. 11, 06020 (2019).

    CAS  Google Scholar 

  51. L.K. Sharma, M. Kar, R.K. Choubey, and S. Mukherjee, Chem. Phys. Lett. 780, 138902 (2021).

    Article  CAS  Google Scholar 

  52. G. Soman, A. Shajan, J. Jassi, N. K. Vijay, in AIP Conference Proceedings, vol. 2263 (2020), p. 050006.

  53. P.K. Pothuganti, A. Bhogi, M.R. Kalimi, and P. Reniguntla, Glass Phys. Chem. 46, 146–154 (2020).

    Article  Google Scholar 

  54. A. Ammari, and M. Trari, Colloids Surf. A 61, 178–186 (2019).

    Article  Google Scholar 

  55. J. Liu, G. Zhang, K. Guo, D. Guo, M. Shi, H. Ning, T. Qiu, J. Chen, X. Fu, R. Yao, and J. Peng, Micromachines 11, 311 (2020).

    Article  Google Scholar 

  56. R.I. Eglitis, J. Purans, and R. Jia, Curr. Comput.-Aided Drug Des. 11, 455 (2021).

    CAS  Google Scholar 

  57. D. Acosta, F. Hernández, A. López-Suárez, and C. Magaña, Solid State Phenom. 286, 49–63 (2019).

    Article  Google Scholar 

  58. S. Kumari, K. Singh, P. Singh, S. Kumar, and A. Thakur, SN Appl. Sci. 2, 1 (2020).

    Article  Google Scholar 

  59. T. Hamai, S. Inoue, S. Arai, and T. Hasegawa, Phys. Rev. Mater. 4, 074601 (2020).

    Article  CAS  Google Scholar 

  60. A. Ammari, M. Trari, and N. Zebbar, Mater. Sci. Semicond. Process. 89, 97–104 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors which to thank Professor Bouslama M’Hammed, the Director of the Materials Laboratory (ENPO-Oran), for providing access to AFM measurements, and Dr. Mhamed Guezzoul from the same laboratory for his help in these measurements.

Funding

This work was funded by the Directorate-General for Scientific Research and Technological Development, Ministry of Higher Education and Scientific Research (Algeria).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this research work equally.

Corresponding author

Correspondence to Abdelkader Ammari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouadah, E., Hamdadou, NE. & Ammari, A. Morphological, Structural and Optical Properties of Fe-Doped WO3 Films Deposited by Spray-Pyrolysis. J. Electron. Mater. 51, 356–369 (2022). https://doi.org/10.1007/s11664-021-09300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09300-0

Keywords

Navigation