Skip to main content
Log in

Tamarindusindica Mediated Combustion Synthesis of BiOCl: Photocatalytic Degradation of Dyes and Synthesis of β-Enaminones

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Environmental pollution due to dyes has been increasing continuously due to the large number of textile industries, which affects living systems. Photocatalytic degradation (PCD) is one of the most efficient methods to expel organic dyes in wastewater. In this respect, synthesizing photocatalytic nanoparticles to degrade organic dyes by a simple and cost-effective method is the real challenge. In this article, a carcinogenic dye, methylene blue, is considered for our study as it releases highly toxic species into the ecosystem and causes severe health problems such as cancer, skin and kidney problems, etc. Bismuth oxychloride has been synthesized by simple, low cost and rapid combustion method using low cost, easily available Tamarindusindica as a fuel at 500 °C for ~10 min. The obtained BiOCl has been characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-Vis spectroscopy, photoluminescence spectroscopy and surface area by Brunauer–Emmett–Teller (BET). The XRD pattern shows a tetragonal phase and the FT-IR spectrum shows the presence of Bi-Cl at 1109 cm−1. SEM shows a flake-like morphology and HR-TEM displays d-spacing values of 0.13 nm. Photoluminescence studies show a green emission peak at 530 nm. Synthesis of β-enaminones was also examined using analogues of aniline and dimedone in presence of BiOCl as a photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

Reference

  1. X. Xiao, T.T. Li, X.R. Lu, X.L. Feng, X. Han, W.W. Li, Q. Li, and H.Q. Yu, Bioresour. Technol. 251, 204 (2018).

    Article  CAS  Google Scholar 

  2. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, Nanoscale 4, 5431 (2012).

    Article  CAS  Google Scholar 

  3. H. Huang, J. Liu, P. Zhang, D. Zhang, and F. Gao, Chem. Eng. J. 307, 696 (2017).

    Article  CAS  Google Scholar 

  4. Q. Zhao, X. Liu, M. Sun, C. Du, and Z. Liu, RSC Adv. 5, 36948 (2015).

    Article  CAS  Google Scholar 

  5. G. Zhan, and H.C. Zeng, Chem. Mater. 28, 4572 (2016).

    Article  CAS  Google Scholar 

  6. C. Cai, Z. Zhang, J. Liu, N. Shan, H. Zhang, and D.D. Dionysiou, Appl. Catal. B Environ. 182, 456 (2016).

    Article  CAS  Google Scholar 

  7. M. B. Kadmi Yassine, Lidia Favier, J. Appl. Surfaces Interfaces 4, 194 (2018).

  8. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, M. Sadiq, S. Qourzal, and N. Barka, Mater. Today Commun. 16, 194 (2018).

    Article  CAS  Google Scholar 

  9. M. Madhukara Naik, H. S. Bhojya Naik, G. Nagaraju, M. Vinuth, H. Raja Naika, and K. Vinu, Microchem. J. 146, 1227 (2019).

  10. P. Singh, and A. Borthakur, J. Clean. Prod. 196, 1669 (2018).

    Article  CAS  Google Scholar 

  11. S. Weng, B. Chen, L. Xie, Z. Zheng, and P. Liu, J. Mater. Chem. A 1, 3068 (2013).

    Article  CAS  Google Scholar 

  12. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, M. Sadiq, F. Z. Mahjoubi, S. Qourzal, and N. Barka, Environ. Nanotechnology, Monit. Manag. 10, 63 (2018).

  13. J.M. Song, C.J. Mao, H.L. Niu, Y.H. Shen, and S.Y. Zhang, CrystEngComm 12, 3875 (2010).

    Article  CAS  Google Scholar 

  14. L. Song, Y. Pang, Y. Zheng, C. Chen, and L. Ge, J. Alloys Compd. 710, 375 (2017).

    Article  CAS  Google Scholar 

  15. J. Geng, W.H. Hou, Y.N. Lv, J.J. Zhu, and H.Y. Chen, Inorg. Chem. 44, 8503 (2005).

    Article  CAS  Google Scholar 

  16. J. Henle, P. Simon, A. Frenzel, S. Scholz, and S. Kaskel, Chem. Mater. 19, 366 (2007).

    Article  CAS  Google Scholar 

  17. J. Lu, W. Zhou, X. Zhang, and G. Xiang, J. Phys. Chem. Lett. 11, 1038 (2020).

    Article  CAS  Google Scholar 

  18. H. Koc, H. Akkus, and A.M. Mamedov, Gazi Univ. J. Sci. 25, 9 (2012).

    Google Scholar 

  19. H. Li, J. Li, Z. Ai, F. Jia, and L. Zhang, Angew. Chemie - Int. Ed. 57, 122 (2018).

    Article  CAS  Google Scholar 

  20. H. Li, J. Shi, K. Zhao, and L. Zhang, Nanoscale 6, 14168 (2014).

    Article  CAS  Google Scholar 

  21. H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai, and L. Zhang, ACS Catal. 6, 8276 (2016).

    Article  CAS  Google Scholar 

  22. L. Mohammadi, M.A. Zolfigol, M. Ebrahiminia, K.P. Roberts, S. Ansari, T. Azadbakht, and S.R. Hussaini, Catal. Commun. 102, 44 (2017).

    Article  CAS  Google Scholar 

  23. V. Sridharan, C. Avendaño, and J.C. Menéndez, Synlett 6, 881 (2007).

    Google Scholar 

  24. G. Negri, C. Kascheres, and A.J. Kascheres, J. Heterocycl. Chem 41, 461 (2004).

    Article  CAS  Google Scholar 

  25. H. Huo, X. Li, X. Zhou, L. Jiao, S. Zhao, L. Zhang, W. Li, S. Li, and R. Li, RSC Adv. 5, 73612 (2015).

    Article  CAS  Google Scholar 

  26. L. Rout, A. Kumar, R.S. Dhaka, and P. Dash, RSC Adv. 6, 49923 (2016).

    Article  CAS  Google Scholar 

  27. M. Patel, Sushmita, and A. K. Verma, J. Chem. Sci. 130, 1 (2018).

  28. C.S. Kumar, and S. Bhattacharya, Crit. Rev. Food Sci. Nutr. 48, 1 (2008).

    Article  CAS  Google Scholar 

  29. S. Tepparin, P. Sae-Be, J. Suesat, and S. Chumrum, Adv. Mater. Res. 233, 1388 (2011).

    Article  CAS  Google Scholar 

  30. M. Balaji, D. Chandrasekaran, R. Ravi, M. Purushothaman, and V. Pandiyan, IndianJ. Poult. Sci. 48, 33 (2013).

    Google Scholar 

  31. S. Bhattacharya, S. Bal, R.K. Mukherjee, and S. Bhattacharya, J. Food Eng. 18, 77 (1993).

    Article  Google Scholar 

  32. M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, and S.K. Rashmi, J. Mater. Sci. Mater. Electron. 29, 20395 (2018).

    Article  CAS  Google Scholar 

  33. Z.S. Seddigi, M.A. Gondal, U. Baig, S.A. Ahmed, M.A. Abdulaziz, E.Y. Danish, M.M. Khaled, and A. Lais, PLoS ONE 12, 1 (2017).

    Article  CAS  Google Scholar 

  34. Z. Deng, F. Tang, and A. J. Muscat, Nanotechnology 19, 295705 (2008).

  35. J. Di, C. Chen, S.Z. Yang, M. Ji, C. Yan, K. Gu, J. Xia, H. Li, S. Li, and Z. Liu, J. Mater. Chem. A 5, 14144 (2017).

    Article  CAS  Google Scholar 

  36. Y. Liang, C. Guo, S. Cao, Y. Tian, and Q. Liu, J. Nanosci. Nanotechnol. 13, 919 (2013).

    Article  CAS  Google Scholar 

  37. C.L. Yu, J.C. Chen, W.Q. Zhou, L.F. Wei, and Q.Z. Fan, Mater. Res. Innov. 19, 54 (2015).

    Article  CAS  Google Scholar 

  38. W. Lin, X. Yu, Y. Zhu, and Y. Zhang, Front. Chem. 6, 1 (2018).

    Article  CAS  Google Scholar 

  39. X. Gao, W. Peng, G. Tang, Q. Guo, and Y. Luo, J. Alloys Compd. 757, 455 (2018).

    Article  CAS  Google Scholar 

  40. X. Zhang, X.B. Wang, L.W. Wang, W.K. Wang, L.L. Long, W.W. Li, H.Q. Yu, and A.C.S. Appl, Mater. Interfaces 6, 7766 (2014).

    Article  CAS  Google Scholar 

  41. F. Chen, H. Liu, S. Bagwasi, X. Shen, and J. Zhang, J. Photochem. Photobiol. A Chem. 215, 76 (2010).

    Article  CAS  Google Scholar 

  42. W.J. Kim, D. Pradhan, B.K. Min, and Y. Sohn, Appl. Catal. B Environ. 147, 711 (2014).

    Article  CAS  Google Scholar 

  43. M. Gao, D. Zhang, X. Pu, K. Ding, H. Li, T. Zhang, and H. Ma, Sep. Purif. Technol. 149, 288 (2015).

    Article  CAS  Google Scholar 

  44. E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, and P. Sfarloaga, J. Taiwan Inst. Chem. Eng. 44, 270 (2013).

    Article  CAS  Google Scholar 

  45. H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao, and G. Zeng, Desalination 286, 41 (2012).

    Article  CAS  Google Scholar 

  46. Udayabhanu, G. Nagaraju, H. Nagabhushana, R. B. Basavaraj, G. K. Raghu, D. Suresh, H. Rajanaika, and S. C. Sharma, Cryst. Growth Des. 16, 6828 (2016).

  47. G. Louit, S. Foley, J. Cabillic, H. Coffigny, F. Taran, A. Valleix, J.P. Renault, and S. Pin, Radiat. Phys. Chem. 72, 119 (2005).

    Article  CAS  Google Scholar 

  48. S. P. Vinay, Udayabhanu, G. Nagarju, C. P. Chandrappa, and N. Chandrasekhar, SN Appl. Sci. 1, 477 (2019).

Download references

Acknowledgments

The authors acknowledge VGST, Govt. of Karnataka (SMYSR, GRD No. 498) for financial support to procure UV-Visible photo-reactor and DST Nanomission (SR/NM/NS-1262/2013), New Delhi, Govt. of India for financial support. Nagaraju also extends thanks Center of Applied Research and Nanotechnology for SEM at SIT, Tumkur facilities (KCTU/R&D/SIT-Nano/2016-17/39). Research supporting project number (RSP-2020/160), King Saud University, Riyadh, Saudi

Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Ethics declarations

Conflict of interest

All the authors are contributed almost equally to the research work. We are hereby declare that the submitted manuscript is original research wok and have not submitted anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashikanth, J., Shashank, M., Sumedha, H.N. et al. Tamarindusindica Mediated Combustion Synthesis of BiOCl: Photocatalytic Degradation of Dyes and Synthesis of β-Enaminones. Journal of Elec Materi 50, 4650–4662 (2021). https://doi.org/10.1007/s11664-021-08994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08994-6

Keywords

Navigation