Skip to main content
Log in

One-step synthesis via solution combustion of Fe(III)-doped BiOCl nanoparticles with high photocatalytic activity

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The Fe(III)-doped BiOCl catalyst was successfully prepared via a one-step solution combustion synthesis (SCS), and they were characterized by XRD, FESEM, HRTEM, XPS, PL and DRS analysis. With the doping of Fe(III), the SCS catalysts become finer and more uniform, and show narrowed bandgap, which makes the Fe(III)-BiOCl can be excited to form photogenerated electrons and holes under visible light irritation and improve the photocatalytic performance. Compared with the SCS BiOCl, the FB1-2 sample exhibits doubled surface area (9.62 m2/g), narrowed bandgap (1.35 eV) and quadrupling degrading efficiency for Rhodamine B (RhB) (93% at 60 min). In addition, through the capturing of free radicals, the photocatalytic degradation mechanism of RhB was proposed, in which the active substances ∙O2 and h+ played a leading role in the degradation process. Owing to the novel one-step combustion process and resulting in excellent photocatalytic performance, the Fe(III) doping BiOCl is demonstrated as a prospective catalyst for degrading dye pollutants.

Graphical abstract

Highlights

  • When the atomic ratio of Fe/Bi is 1:1, Fe(III)-BiOCl forms 20–40 nm nanoparticles.

  • Fe doping greatly reduces the band gap of BiOCl, with a minimum of 1.35 ev.

  • The photocatalytic performance of FB1-2 is 4 times that of BiOCl with 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tian CH, Luo S, She JR, Qing Y, Yan N, Wu YQ, Liu ZC (2019) Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation. Appl Surf Sci 464:606–615. https://doi.org/10.1016/j.apsusc.2018.09.126

    Article  CAS  Google Scholar 

  2. Huang XQ, Niu YL, Peng ZP, Hu WH (2019) Core–shell structured BiOCl@polydopamine hierarchical hollow microsphere for highly efficient photocatalysis. Colloids Surf A: Physicochem Eng Asp 580:123747. https://doi.org/10.1016/j.colsurfa.2019.123747

  3. Song JL, Fan QN, Zhu WH, Wang RF, Dong ZP (2016) Preparation of BiOCl with high specific surface area and excellent visible light photocatalytic activity. Mater Lett 165:14–18. https://doi.org/10.1016/j.matlet.2015.11.093

    Article  CAS  Google Scholar 

  4. Nussbaum M, Shaham-Waldmann N, Paz Y (2014) Synergistic photocatalytic effect in Fe, Nb-doped BiOCl. J Photochemistry Photobiol A: Chem 290:11–21. https://doi.org/10.1016/j.jphotochem.2014.05.008

    Article  CAS  Google Scholar 

  5. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B: Environ 68:125–129. https://doi.org/10.1016/j.apcatb.2006.08.002

    Article  CAS  Google Scholar 

  6. Zhao Y, Chen T, Ma R, Du JF, Xie C (2018) Synthesis of flower-like CeO2/BiOCl heterostructures with enhanced ultraviolet light photocatalytic activity. Micro Nano Lett 13:1394–1398. https://doi.org/10.1049/mnl.2018.5228

    Article  CAS  Google Scholar 

  7. Gao MC, Zhang DF, Pu XP, Ding KY, Li H, Zhang TT, Ma HY (2015) Combustion synthesis of Bi/BiOCl composites with enhanced electron–hole separation and excellent visible light photocatalytic properties. Sep Purif Technol 149:288–294. https://doi.org/10.1016/j.seppur.2015.06.002

    Article  CAS  Google Scholar 

  8. Gao MC, Zhang DF, Pu XP, Li H, Li WZ, Shao X, Lv DD, Zhang BB, Dou JM (2015) Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities. Sep Purif Technol 162(2016):114–119. https://doi.org/10.1016/j.seppur.2016.02.024

    Article  CAS  Google Scholar 

  9. Ma DM, Zhong JB, Li JZ, Wang L, Peng RF (2018) Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight. Appl Surf Sci 443:497–505. https://doi.org/10.1016/j.apsusc.2018.03.018

    Article  CAS  Google Scholar 

  10. Miao SC, Zha ZX, Li Y, Geng XX, Yang JH, Cui SH, Yang J (2019) Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate: photocatalytic performance and mechanism. J Photochem Photobiol A: Chem 380. https://doi.org/10.1016/j.jphotochem.2019.111862

  11. Li K, Liang YJ, Yang J, Gao Q, Zhu YL, Liu SQ, Xu R, Wu XY (2017) Controllable synthesis of {001} facet dependent foursquare BiOCl nanosheets: a high efficiency photocatalyst for degradation of methyl orange. J Alloy Compd 695:238–249. https://doi.org/10.1016/j.jallcom.2016.10.204

    Article  CAS  Google Scholar 

  12. Gao MC, Zhang DF, Pu XP, Shao X, Li H, Lv DD (2015) Combustion synthesis and enhancement of BiOCl by doping Eu3+ for photodegradation of organic dye. J Am Ceram Soc 99:881–887. https://doi.org/10.1111/jace.14012

    Article  CAS  Google Scholar 

  13. Sarwan B, Pare B, Acharya AD (2019) Synthesis of Mn/NiO and Mn/BiOCl nanoparticles for degradation of Nile blue dye contaminated water under visible light illumination. Particulate Sci Technol 38:659–666. https://doi.org/10.1080/02726351.2019.1570991

    Article  CAS  Google Scholar 

  14. Sulaiman SNA, Zaky Noh M, Nadia Adnan N, Bidin N, Ab Razak SN (2018) Effects of photocatalytic activity of metal and non-metal doped TiO2 for Hydrogen production enhancement – a review. J Phys Conf Ser 1027:012006. https://doi.org/10.1088/1742-6596/1027/1/012006

  15. Sadeghzadeh-Attar A (2020) Photocatalytic degradation evaluation of N-Fe codoped aligned TiO2 nanorods based on the effect of annealing temperature. J Adv Ceram 9:107–122. https://doi.org/10.1007/s40145-019-0353-1

    Article  CAS  Google Scholar 

  16. Yu HG, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. J Phys Chem C 114:16481–16487. https://doi.org/10.1021/jp1071956

  17. Liu M, Qiu XQ, Miyauchi M, Hashimoto K (2013) Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J Am Chem Soc 135:10064–10072. https://doi.org/10.1021/ja401541k

    Article  CAS  Google Scholar 

  18. Guo Q, Zhou CY, Ma ZB, Yang XM (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:e1901997. https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  19. Shahid MZ, Mehmood R, Athar M, Hussain J, Wei YW, Khaliq A (2020) BiOCl nanoplates doped with Fe3+ ions for the visible-light degradation of aqueous pollutants. ACS Appl Nano Mater 4:746–758. https://doi.org/10.1021/acsanm.0c03042

    Article  CAS  Google Scholar 

  20. Li YT, Li CM, Zhang ZF, Zhang YY, Sun XG, Si HY, Zhang JM (2014) Black BiOCl with disorder surface structure prepared by Fe reduction and the enhanced photocatalytic activity. Solid State Sci 34:107–112. https://doi.org/10.1016/j.solidstatesciences.2014.05.011

    Article  CAS  Google Scholar 

  21. Zhang N, Li LG, Shao Q, Zhu T, Huang XX, Xiao XH (2019) Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation. ACS Appl Energ Mater 2:8394–8398. https://doi.org/10.1021/acsaem.9b01961

    Article  CAS  Google Scholar 

  22. Zhao QH, Liu XY, Sun ML, Du CF, Liu ZL (2015) Natural kaolin derived stable SBA-15 as a support for Fe/BiOCl: a novel and efficient Fenton-like catalyst for the degradation of 2-nitrophenol. RSC Adv 5:36948–36956. https://doi.org/10.1039/c5ra01804h

    Article  CAS  Google Scholar 

  23. Zhong X, Zhang KX, Wu D, Ye XY, Huang W, Zhou BX (2020) Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem Eng J 383. https://doi.org/10.1016/j.cej.2019.123148

  24. Tekin G, Ersoz G, Atalay S (2018) Visible light assisted Fenton oxidation of tartrazine using metal doped bismuth oxyhalides as novel photocatalysts. J Environ Manag 228:441–450. https://doi.org/10.1016/j.jenvman.2018.08.099

    Article  CAS  Google Scholar 

  25. Zhao QH, Liu XY, Xing YX, Liu ZH, Du CF (2016) Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J Mater Sci 52:2117–2130. https://doi.org/10.1007/s10853-016-0499-y

    Article  CAS  Google Scholar 

  26. Li YT, Li CM, Sun XG, Zhang ZF, Peng Z, Zhang JM, Zhao JJ (2014) Preparation of black BiOCl with visible light photocatalytic activity by Fe reduction. Mater Lett 116:98–100. https://doi.org/10.1016/j.matlet.2013.10.114

    Article  CAS  Google Scholar 

  27. Tian F, Li GF, Zhao HP, Chen FX, Li M, Liu YL, Chen R (2019) Residual Fe enhances the activity of BiOCl hierarchical nanostructure for hydrogen peroxide activation. J Catal 370:265–273. https://doi.org/10.1016/j.jcat.2018.12.023

    Article  CAS  Google Scholar 

  28. Mi Y, Wen LY, Wang ZJ, Cao DW, Xu R, Fang YG, Zhou YL, Lei Y (2016) Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst. Nano Energy 30:109–117. https://doi.org/10.1016/j.nanoen.2016.10.001

    Article  CAS  Google Scholar 

  29. Shabani M, Haghighi M, Kahforoushan D, Heidari S (2019) Grain-like bismuth-rich bismuth/bismuth oxychlorides intra-heterojunction: Efficacious solar-light-driven photodegradation of fluoroquinolone antibiotics and 2-level factorial approach. J Taiwan Inst Chem Eng 96:243–255. https://doi.org/10.1016/j.jtice.2018.11.018

    Article  CAS  Google Scholar 

  30. Shabani M, Haghighi M, Kahforoushan D (2018) One-pot combustion fabrication of grain-like mesoporous intra-heterostructure BixOyClz nanophotocatalyst with substantial solar-light-driven degradation of antibiotic ofloxacin: influence of various fuels. Catal Sci Technol 8:4052–4069. https://doi.org/10.1039/c8cy00547h

    Article  CAS  Google Scholar 

  31. Phadke V, Chandramma S, Nagabhushana H, Basavaraj RB (2018) Synthesis of BiOCl: Eu3+ microarchitectures and their WLED’s, fingerprint detection and anticounterfeiting applications. Mater Today: Proc 5:22630–22637. https://doi.org/10.1016/j.matpr.2018.06.637

    Article  CAS  Google Scholar 

  32. Gao XY, Tang GB, Peng W, Guo Q, Luo YM (2019) Surprise in the phosphate modification of BiOCl with oxygen vacancy: In situ construction of hierarchical Z-scheme BiOCl-OV-BiPO4 photocatalyst for the degradation of carbamazepine. Chem Eng J 360:1320–1329. https://doi.org/10.1016/j.cej.2018.10.216

    Article  CAS  Google Scholar 

  33. Li K, Liang YJ, Yang J, Zhang H, Yang G, Lei W (2018) BiOCl/Fe2O3 heterojunction nanoplates with enhanced visible-light-driven photocatalytic performance for degrading organic pollutants and reducing Cr(VI). J Photochemistry Photobiol A: Chem 364:240–249. https://doi.org/10.1016/j.jphotochem.2018.06.001

    Article  CAS  Google Scholar 

  34. Yang QP, Zhai YB, Li XF, Li HZ (2018) Synthesis of Fe3O4/Pr-BiOCl/Luffa composites with enhanced visible light photoactivity for organic dyes degradation. Mater Res Bull 106:409–417. https://doi.org/10.1016/j.materresbull.2018.06.029

    Article  CAS  Google Scholar 

  35. Kang W, Varma A (2018) Hydrogen generation from hydrous hydrazine over Ni/CeO2 catalysts prepared by solution combustion synthesis. Appl Catal B: Environ 220:409–416. https://doi.org/10.1016/j.apcatb.2017.08.053

    Article  CAS  Google Scholar 

  36. Verza JR, Morelli MR (2020) Solution combustion synthesis of the KBiFe2O5 phase for photovoltaic applications: the fuel effect on phase formation and powder morphology. J Solid State Chem 291. https://doi.org/10.1016/j.jssc.2020.121611

  37. Zhang DF, Pu XP, Li HY, Yu YM, Shim JJ, Cai PQ, Kim SI, Seo HJ (2015) Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiation. Mater Res Bull 61:321–325. https://doi.org/10.1016/j.materresbull.2014.10.048

    Article  CAS  Google Scholar 

  38. Li FT, Wang Q, Wang XJ, Li B, Hao YJ, Liu RH, Zhao DS (2014) In-situ one-step synthesis of novel BiOCl/Bi24O31Cl10 heterojunctions via self-combustion of ionic liquid with enhanced visible-light photocatalytic activities. Appl Catal B: Environ 150-151:574–584. https://doi.org/10.1016/j.apcatb.2014.01.009

    Article  CAS  Google Scholar 

  39. Hou JG, Wang Z, Jiao SQ, Zhu HM (2011) 3D Bi12TiO20/TiO2 hierarchical heterostructure: synthesis and enhanced visible-light photocatalytic activities. J Hazard Mater 192:1772–1779. https://doi.org/10.1016/j.jhazmat.2011.07.013

    Article  CAS  Google Scholar 

  40. Niu SY, Zhang RY, Zhang ZY, Zheng JM, Jiao Y, Guo CF (2019) In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity. Inorg Chem Front 6:791–798. https://doi.org/10.1039/c8qi01347k

    Article  CAS  Google Scholar 

  41. Lv DD, Zhang DF, Pu XP, Kong DZ, Lu ZH, Shao X, Ma HY, Dou JM (2017) One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties. Sep Purif Technol 174:97–103. https://doi.org/10.1016/j.seppur.2016.10.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019ZDPY20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Shang, Z., Yang, Z. et al. One-step synthesis via solution combustion of Fe(III)-doped BiOCl nanoparticles with high photocatalytic activity. J Sol-Gel Sci Technol 103, 309–318 (2022). https://doi.org/10.1007/s10971-022-05795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05795-z

Keywords

Navigation