Skip to main content
Log in

Polypyrrole-Functionalized Silicon Nanowires for Isopropanol Sensing at Room Temperature

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to enhance the sensing performance of isopropanol (IPA) vapor at room temperature (RT), a conducting polymer of polypyrrole (PPy) was employed to modify the ordered silicon nanowires (SiNWs). The loose structure of SiNWs which has the advantage of forming the structure of SiNWs uniformly coated by PPy was obtained via a dual-metal-assisted chemical etching (MACE) process. Vapor chemical polymerization of the pyrrole monomer (Py) was employed to prepare ultrathin PPy film uniformly functionalized SiNWs array, i.e., PPy@SiNWs. The results exhibit that an ultrathin PPy shell with thickness of 10 nm is wrapped on the surface of a loose SiNWs array forming perfect core-shell structure. Comparative investigations on the IPA-sensing properties of the PPy@SiNWs, SiNWs and PPy were carried out at RT. It shows that the as-formed PPy@SiNW sensor exhibits about a sevenfold response enhancement to 100 ppm IPA gas compared to the bare SiNWs. Moreover, the PPy@SiNW shows an acceptable stability, with a response attenuation of 8.9% observed within 33 days. The gas sensing results confirm that the PPy decoration can improve the sensing response and stability of the SiNW-based sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhang, B. Gao, A.E. Creamer, C. Cao, and Y. Li, J. Hazard Mater. 338, 102 (2017).

    Article  CAS  Google Scholar 

  2. F. Brugnone, L. Perbellini, P. Apostoli, M. Bellomi, and D. Caretta, Br. J. Ind. Med. 40, 160 (1983).

    CAS  Google Scholar 

  3. Q. Jin, W. Wen, S. Zheng, and J.M. Wu, Nanotechnology 31, 195502 (2020).

    Article  CAS  Google Scholar 

  4. B. Zhang, W. Fu, X. Meng, R.A.P. Su, and H. Yang, Appl. Surf. Sci. 456, 586 (2018).

    Article  CAS  Google Scholar 

  5. I. Karaduman, D.E. Yıldız, M.M. Sincar, and S. Acar, Mater. Sci. Semicond. Process 28, 43 (2014).

    Article  CAS  Google Scholar 

  6. J. Zhang, Z. Qin, D. Zeng, and C. Xie, Phys. Chem. Chem. Phys. 19, 6313 (2017).

    Article  CAS  Google Scholar 

  7. S. Zhang, C. Wang, F. Qu, S. Liu, C.T. Lin, and S. Du, Nanotechnology 31, 115502 (2020).

    Article  CAS  Google Scholar 

  8. J. Gao, L. Wang, Z. Guo, B. Li, H. Wang, and J. Luo, Chem. Eng. J. 381, 122778 (2020).

    Article  Google Scholar 

  9. H. Liu, W. Huang, X. Yang, K. Dai, G. Zheng, and C. Liu, J. Mater. Chem. C 4, 4459 (2016).

    Article  CAS  Google Scholar 

  10. C. Basavaraja, W.J. Kim, P.X. Thinh, and D.S. Huh, Polym. Compos. 32, 2076 (2011).

    Article  CAS  Google Scholar 

  11. D.-W. Ihm, H.-Y. Woo, C.-R. Hwang, Y.-K. Lee, and J.-Y. Kim, Sens. Actuat. B Chem. 153, 421 (2011).

    Article  CAS  Google Scholar 

  12. B. Liua, X. Liua, Z. Yuana, Y. Jianga, Y. Sua, and J. Mab, Sens. Actuat. B Chem. 295, 86 (2019).

    Article  Google Scholar 

  13. J. Yun, J.H. Ahn, D.I. Moon, Y.K. Choi, and I. Park, ACS Appl. Mater. Interfaces 11, 42349 (2019).

    Article  CAS  Google Scholar 

  14. Y. Qin, D. Liu, T. Zhang, and Z. Cui, ACS Appl Mater Interfaces 9, 28766 (2017).

    Article  CAS  Google Scholar 

  15. D. Liu, L. Lin, Q. Chen, H. Zhou, and J. Wu, ACS Sensors 2, 1491 (2017).

    Article  CAS  Google Scholar 

  16. H. Albaris, and G. Karuppasamy, Mater. Sci. Eng. B 257, 114558 (2020).

    Article  CAS  Google Scholar 

  17. M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, and M.Z. Quadir, Sens. Actuators, B Chem. 238, 972 (2017).

    Article  CAS  Google Scholar 

  18. J. Li, L. Wang, H. Liu, J. Zhao, X. Li, and H. Wei, J. Alloys. Compd. 694, 939 (2017).

    Article  CAS  Google Scholar 

  19. A. Cao, E.J. Sudholter, and L.C. de Smet, Sensors (Basel) 14, 245 (2013).

    Article  Google Scholar 

  20. B.-R. Huang, Y.-K. Yang, and H.-L. Cheng, Nanotechnology 24, 475502 (2013).

    Article  Google Scholar 

  21. Y. Qin, Z. Cui, T. Zhang, and D. Liu, Sens. Actuat. B Chem. 258, 246 (2018).

    Article  CAS  Google Scholar 

  22. D. Kumar, S.K. Srivastava, P.K. Singh, K.N. Sood, V.N. Singh, N. Dilawar et al., J. Nanopart. Res. 12, 2267 (2009).

    Article  Google Scholar 

  23. K. Peng, Y. Yan, S. Gao, and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  CAS  Google Scholar 

  24. K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, and Y. Xu, Adv. Funct. Mater. 16, 387 (2006).

    Article  CAS  Google Scholar 

  25. X. Zhong, Y. Qu, Y.C. Lin, L. Liao, and X. Duan, ACS. Appl. Mater. Interfaces 3, 261 (2011).

    Article  CAS  Google Scholar 

  26. Y. Qin, Y. Jiang, and L. Zhao, Adv. Eng. Mater. 20, 1700893 (2018).

    Article  Google Scholar 

  27. H. Tomioka, and S. Adachi, ECS J. Solid State Sci. Technol. 2, 253 (2013).

    Article  Google Scholar 

  28. D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, and Y. Ma, J. Power Sour. 196, 5990 (2011).

    Article  CAS  Google Scholar 

  29. D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, and C.D. Lokhande, J. Mater. Chem. 22, 3044 (2012).

    Article  CAS  Google Scholar 

  30. A. Kaur, and R. Kumar, Sens. Actuat. A 245, 113 (2016).

    Article  CAS  Google Scholar 

  31. J. Liao, Z. Li, G. Wang, C. Chen, S. Lv, and M. Li, Phys. Chem. Chem. Phys. 18, 4835 (2016).

    Article  CAS  Google Scholar 

  32. O. Lupan, T. Pauporte, and B. Viana, J. Phys. Chem. C 114, 14781 (2010).

    Article  CAS  Google Scholar 

  33. S. Radhakrishnan, and S. Unde, J. Appl. Polym. Sci. 71, 2059 (1999).

    Article  CAS  Google Scholar 

  34. P. Liu, S. Wu, Y. Zhang, H. Zhang, and X. Qin, Nanomaterials (Basel) 6, 121 (2016).

    Article  CAS  Google Scholar 

  35. N.E. Agbor, M.C. Pertty, and A.P. Monkman, Sens. Actuat. B Chem. 28, 173 (1995).

    Article  CAS  Google Scholar 

  36. A. Beniwal, Sens. Actuat. B Chem. 296, 126660 (2019).

    Article  CAS  Google Scholar 

  37. S.A.H. Juybari, and H.M. Moghaddam, Mod. Phys. Lett. B 34, 2050188 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 61971308, 61574100) and Tianjin National Natural Science Foundation of China (No.19JCZDJC30900)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiang Qin or Xinyang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 313 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Wang, X., Cui, Z. et al. Polypyrrole-Functionalized Silicon Nanowires for Isopropanol Sensing at Room Temperature. Journal of Elec Materi 50, 4540–4548 (2021). https://doi.org/10.1007/s11664-021-08988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08988-4

Keywords

Navigation