Skip to main content
Log in

Carbon Nanotube Supported Li-Excess Cation-Disordered Li1.24Fe0.38Ti0.38O2 Cathode with Enhanced Lithium-Ion Storage Performance

  • Topical Collection: Carbon-Based Materials for Energy Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of Li-excess approach can achieve efficient lithium ion storage of cation-disordered rock-salt cathode materials. However, their application is limited by poor intrinsic electronic conductivity and insufficient Li-ion diffusion. Herein, a carbon nanotube is incorporated in the Li-excess Li1.24Fe0.38Ti0.38O2 cathode material, resulting in the formation of refined Li1.24Fe0.38Ti0.38O2 nanoparticles that are well loaded in a continuous conductive network. This facilitates the charge transfer and ion diffusion in the cathode. The as-prepared Li1.24Fe0.38Ti0.38O2/carbon nanotube (LFT/CNT) cathode, therefore, delivers significantly enhanced rate capability with a reversible capacity of 108 mAh g−1 after 200 cycles at 1 C compared to 36 mAh g−1 of the as-prepared LFT cathode. The result of ex situ x-ray diffraction demonstrates the reversible and small lattice volume change of the LFT/CNT cathode during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.A. House, L. Jin, U. Maitra, K. Tsuruta, J.W. Somerville, D.P. Förstermann, F. Massel, L. Duda, M.R. Roberts, and P.G. Bruce, Energy Environ. Sci. 11, 926 (2018).

    Article  CAS  Google Scholar 

  2. X. Zhu, F. Meng, Q. Zhang, L. Xue, H. Zhu, S. Lan, Q. Liu, J. Zhao, Y. Zhuang, Q. Guo, B. Liu, L. Gu, X. Lu, Y. Ren, and H. Xia, Nat. Sustain. (2020). https://doi.org/10.1038/s41893-020-00660-9.

    Article  Google Scholar 

  3. P.E. Pearce, A.J. Perez, G. Rousse, M. Saubanere, D. Batuk, D. Foix, E. McCalla, A.M. Abakumov, G.V. Tendeloo, M.L. Doublet, and J.M. Tarascon, Nat. Mater. 16, 580 (2017).

    Article  CAS  Google Scholar 

  4. H. Liu, X.B. Cheng, Z. Jin, R. Zhang, G. Wang, L.Q. Chen, Q.B. Liu, J.Q. Huang, and Q. Zhang, Energy Chem. 1, 100003 (2019).

    Article  Google Scholar 

  5. M. Yan, W.P. Wang, Y.X. Yin, L.J. Wan, and Y.G. Guo, Energy Chem 1, 100003 (2019).

    Article  Google Scholar 

  6. X. Zhao, Z. Zhao-Karger, M. Fichtner, and X. Shen, Angew. Chem. Int. Ed. 59, 5902 (2020).

    Article  CAS  Google Scholar 

  7. J. Li, H. Zhang, L. Luo, H. Li, J. He, H. Zu, L. Liu, H. Liu, F. Wang, and J. Song, J. Mater. Chem. A 9, 2205 (2020).

    Article  Google Scholar 

  8. X. Yang, H. Zu, L. Luo, H. Zhang, J. Li, X. Yi, H. Liu, F. Wang, and J. Song, J. Alloys Compd. 833, 154969 (2020).

    Article  CAS  Google Scholar 

  9. D. Morgan, A.V. Ven, and G. Ceder, Electrochem. Solid State Lett. 7, A30 (2004).

    Article  CAS  Google Scholar 

  10. A.V. Ven, J. Bhattacharya, and A.A. Belak, Accounts Chem. Res. 46, 1216 (2013).

    Article  Google Scholar 

  11. M.M. Thackeray, P.J. Johnson, and L.A. Picciotto, Mater. Res. Bull. 19, 179 (1984).

    Article  CAS  Google Scholar 

  12. J. Wang, X. He, E. Paillard, N. Laszczynski, J. Li, and S. Passerini, Adv. Energy Mater. 6, 1600906 (2016).

    Article  Google Scholar 

  13. S. Abarna, R.S. Periathai, R.P. Vengatesh, and N. Prithivikumaran, J. Electron. Mater. 49, 6622 (2020).

    Article  CAS  Google Scholar 

  14. C. Delmas, S. Brethes, and M. Menetrier, J. Power Sources 34, 113 (1991).

    Article  CAS  Google Scholar 

  15. O.M. Obrovac, and J.R. Dahn, Solid State Ionics 112, 9 (1998).

    Article  CAS  Google Scholar 

  16. A.U. Jinhyuk Lee, X. Li, D. Su, G. Hautier, and G. Ceder, Science 343, 519 (2014).

    Article  Google Scholar 

  17. A. Urban, J. Lee, and G. Ceder, Adv. Energy Mater. 4, 1400478 (2014).

    Article  Google Scholar 

  18. S.L. Glazier, J. Li, J. Zhou, T. Bond, and J.R. Dahn, Chem. Mater. 27, 7751 (2015).

    Article  CAS  Google Scholar 

  19. M. Tabuchi, A. Nakashima, H. Shigemura, K. Ado, H. Kobayashi, H. Sakaebe, K. Tatsumi, H. Kageyama, T. Nakamura, and R. Kanno, J. Mater. Chem. 13, 1747 (2003).

    Article  CAS  Google Scholar 

  20. B. Li, N. Jiang, W. Huang, H. Yan, Y. Zuo, and D. Xia, Adv. Funct. Mater. 28, 1704864 (2018).

    Article  Google Scholar 

  21. M.T. Shigemura, H. Sakaebe, H. Kobayashi, and H. Kageyama, J. Electrochem. Soc. 150, A638 (2003).

    Article  CAS  Google Scholar 

  22. J. Lee, D.H. Seo, M. Balasubramanian, N. Twu, X. Li, and G. Ceder, Energy Environ. Sci. 8, 3255 (2015).

    Article  CAS  Google Scholar 

  23. X. Wang, W. Huang, S. Tao, H. Xie, C. Wu, Z. Yu, X. Su, J. Qi, Z. Rehman, L. Song, G. Zhang, W. Chu, and S. Wei, J. Power Sources 359, 270 (2017).

    Article  CAS  Google Scholar 

  24. R.J. Clément, Z. Lun, and G. Ceder, Energy Environ. Sci. 13, 345 (2020).

    Article  Google Scholar 

  25. E. Zhao, L. He, B. Wang, X. Li, J. Zhang, Y. Wu, J. Chen, S. Zhang, T. Liang, Y. Chen, X. Yu, H. Li, L. Chen, X. Huang, H. Chen, and F. Wang, Energy Storage Mater. 16, 354 (2019).

    Article  Google Scholar 

  26. M. Küzma, R. Dominko, A. Meden, D. Makovec, M. Bele, J. Jamnik, and M. Gaberšček, J. Power Sources 189, 81 (2009).

    Article  Google Scholar 

  27. R.D. Kuezm, D. Hanžel, A. Kodre, I. Arčon, A. Meden, and M. Gaberšček, J. Electrochem. Soc. 156, A809 (2009).

    Article  Google Scholar 

  28. M. Yang, X. Zhao, C. Yao, Y. Kong, L. Ma, and X. Shen, Mater. Technol. 31, 537 (2016).

    Article  CAS  Google Scholar 

  29. M. Yang, J. Jin, Y. Shen, S. Sun, X. Zhao, X. Shen, and A.C.S. Appl, Mater. Inter. 11, 44144 (2019).

    Article  CAS  Google Scholar 

  30. Y. Chen, X. Hu, B. Evanko, X. Sun, X. Li, T. Hou, S. Cai, C. Zheng, W. Hu, and G.D. Stucky, Nano Energy 46, 117 (2018).

    Article  CAS  Google Scholar 

  31. X. Zhao, Z. Zhao, M. Yang, H. Xia, T. Yu, X. Shen, and A.C.S. Appl, Mater. Inter. 9, 2535 (2017).

    Article  CAS  Google Scholar 

  32. Z. Zhao, T. Yu, Y. Miao, and X. Zhao, Electrochim. Acta 270, 30 (2018).

    Article  CAS  Google Scholar 

  33. Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, and J. Tu, Adv. Sci. 5, 1700786 (2018).

    Article  Google Scholar 

  34. Z. Yao, X. Xia, Y. Zhong, Y. Wang, B. Zhang, D. Xie, X. Wang, J. Tu, and Y. Huang, J. Mater. Chem. A 5, 8916 (2017).

    Article  CAS  Google Scholar 

  35. B. Lesiak, L. Kövér, J. Tóth, J. Zemek, P. Jiricek, A. Kromka, and N. Rangam, Appl. Surf. Sci. 452, 223 (2018).

    Article  CAS  Google Scholar 

  36. J. Lee, J.K. Papp, R.J. Clement, S. Sallis, D.H. Kwon, T. Shi, W. Yang, B.D. McCloskey, and G. Ceder, Nat. Commun. 8, 981 (2017).

    Article  Google Scholar 

  37. B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, Y. Zhu, Z. Liu, and Y.S. Meng, Nat. Commun. 7, 12108 (2016).

    Article  CAS  Google Scholar 

  38. R. Chen, R. Witte, R. Heinzmann, S. Ren, S. Mangold, H. Hahn, R. Hempelmann, H. Ehrenberg, and S. Indris, Phys. Chem. Chem. Phys. 18, 7695 (2016).

    Article  CAS  Google Scholar 

  39. M. Yang, X. Zhao, Y. Bian, L. Ma, Y. Ding, and X. Shen, J. Mater. Chem. 22, 6200 (2012).

    Article  CAS  Google Scholar 

  40. S.R.S. Prabaharan, M.S. Michael, H. Ikuta, Y. Uchimoto, and M. Wakihar, Solid State Ionics 172, 39 (2004).

    Article  CAS  Google Scholar 

  41. Y. Liu, S. Zheng, H. Wan, A. Dou, D. Chu, and M. Su, J. Alloys Compd. 728, 659 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51674147), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 19KJB480013), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Postgraduate Research and Practice Innovation Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Yang or Xiangyu Zhao.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Yang, Y., Li, J. et al. Carbon Nanotube Supported Li-Excess Cation-Disordered Li1.24Fe0.38Ti0.38O2 Cathode with Enhanced Lithium-Ion Storage Performance. J. Electron. Mater. 50, 5029–5036 (2021). https://doi.org/10.1007/s11664-021-08975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08975-9

Keywords

Navigation