Skip to main content
Log in

Self-ordered Porous Anodic Alumina Templates by a Combinatory Anodization Technique in Oxalic and Selenic Acids

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A combinatory two-step anodization technique is presented to prepare self-ordered porous anodic alumina (PAO) templates. The first and second anodization steps are performed in oxalic and selenic acid at 40 V and 45 V, respectively, giving rise to 13-nm-diameter PAOs with high ordering and porosity of 1.4%. The anodization time for the second step is also changed to investigate the effect of the oxide layer thickness on the pore ordering, using field-emission scanning electron microscopy and fast Fourier transform analyses. Increasing the anodization time from 20 min to 1 h considerably improved the ordering and hexagonal domain structures. Further increasing the anodization time up to 8 h continuously deteriorated the ordering of the PAOs, although the nanopore growth rate remained almost constant. The fabrication of small-diameter PAOs in selenic acid is discussed and related to the electric field concentration at the oxide–electrolyte interface at the bottom of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Wu, Y. Li, Z. Li, S. Li, L. Shen, X. Hu, and Z. Ling, Electrochem. Commun. 109, 106602 (2019).

    Article  CAS  Google Scholar 

  2. T. Čižmar, I. Panžić, K. Salamon, I. Grčić, L. Radetić, J. Marčec, and A. Gajović, Catalysts 10, 19 (2020).

    Article  CAS  Google Scholar 

  3. Y. Yu, Y. Zhao, K. Li, G. Zhang, K. Yu, Y. Ma, and Y. Li, Appl. Surf. Sci. 503, 144316 (2020).

    Article  CAS  Google Scholar 

  4. A. Apolinário, C.T. Sousa, G.N. Oliveira, A.M. Lopes, J. Ventura, L. Andrade, A. Mendes, and J.P. Araújo, Nanomaterials 10, 382 (2020).

    Article  CAS  Google Scholar 

  5. L. Xu, Q. Li, M. Myers, Q. Chen, and X. Li, J. Rock Mech. Geotech. Eng. 11, 892 (2019).

    Article  Google Scholar 

  6. E. Sani, S. Failla, and D. Sciti, Scr. Mater. 176, 58 (2020).

    Article  CAS  Google Scholar 

  7. N.G. Jaques, J.W. de Lima-Souza, M. Popp, J. Kolbe, M.V.L. Fook, and R.M.R. Wellen, Compos. Part B Eng. 183, 107651 (2020).

    Article  CAS  Google Scholar 

  8. G. Yellapu, C.C. Vishal, M.P. Kandoth, P. Saha, R.R. Bojja, S. Gandham, and R. Kanaparthi, Therm. Sci. Eng. Prog. 12, 13 (2019).

    Article  Google Scholar 

  9. K.S. Napolskii, A.A. Noyan, and S.E. Kushnir, Opt. Mater. 109, 110317 (2020).

    Article  CAS  Google Scholar 

  10. R. Saeki, and T. Ohgai, Res. Phys. 15, 102658 (2019).

    Google Scholar 

  11. P.G. Schiavi, P. Altimari, A. Rubino, and F. Pagnanelli, Electrochim. Acta 259, 711 (2018).

    Article  CAS  Google Scholar 

  12. M.S. Schmidt, J. Hübner, and A. Boisen, Adv. Mater. 24, 11 (2012).

    Google Scholar 

  13. T. Yang, X. Fu, Q. Zhang, Y. Cui, C. Yuan, W. Zhang, H. Ge, and Y. Chen, Appl. Phys. A 117, 909 (2014).

    Article  CAS  Google Scholar 

  14. T.H. Talukdar, B. McCoy, S.K. Timmins, T. Khan, and J.D. Ryckman, Proc. Natl. Acad. Sci. 117, 30107 (2020).

    Article  CAS  Google Scholar 

  15. T.H. Talukdar, G.D. Allen, I. Kravchenko, and J.D. Ryckman, Opt. Express 27, 22485 (2019).

    Article  CAS  Google Scholar 

  16. K. Lee, H. Kim, J.H. Kim, and D. Choi, Scr. Mater. 187, 125 (2020).

    Article  CAS  Google Scholar 

  17. C.V. Manzano, D. Ramos, L. Petho, G. Bürki, J. Michler, and L. Philippe, J. Phys. Chem. C 122, 957 (2018).

    Article  CAS  Google Scholar 

  18. S. Abbasimofrad, M.A. Kashi, M. Noormohammadi, and A. Ramazani, J. Phys. Chem. Solids 118, 221 (2018).

    Article  CAS  Google Scholar 

  19. H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys. 37, 1340 (1998).

    Article  Google Scholar 

  20. H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, 127 (1997).

    Article  Google Scholar 

  21. H. Masuda, and M. Satoh, Jpn. J. Appl. Phys. 35, 126 (1996).

    Article  Google Scholar 

  22. S. Ono, M. Saito, and H. Asoh, Electrochim. Acta 51, 827 (2005).

    Article  CAS  Google Scholar 

  23. C. Sun, J. Luo, L. Wu, and J. Zhang, ACS Appl. Mater. Interfaces 2, 1299 (2010).

    Article  CAS  Google Scholar 

  24. I.V. Roslyakov, E.O. Gordeeva, and K.S. Napolskii, Electrochim. Acta 241, 362 (2017).

    Article  CAS  Google Scholar 

  25. W.J. Stępniowski, A. Nowak-Stępniowska, A. Presz, T. Czujko, and R.A. Varin, Mater. Charact. 91, 1 (2014).

    Article  CAS  Google Scholar 

  26. L. Zaraska, W.J. Stępniowski, E. Ciepiela, and G.D. Sulka, Thin Solid Films 534, 155 (2013).

    Article  CAS  Google Scholar 

  27. K.S. Napolskii, I.V. Roslyakov, A.A. Eliseev, D.V. Byelov, A.V. Petukhov, N.A. Grigoryeva, W.G. Bouwman, A.V. Lukashin, A.P. Chumakov, and S.V. Grigoriev, J. Phys. Chem. C 115, 23726 (2011).

    Article  CAS  Google Scholar 

  28. I.V. Roslyakov, D.S. Koshkodaev, A.A. Eliseev, D. Hermida-Merino, V.K. Ivanov, A.V. Petukhov, and K.S. Napolskii, J. Phys. Chem. C 121, 27511 (2017).

    Article  CAS  Google Scholar 

  29. I.V. Roslyakov, A.A. Eliseev, E.V. Yakovenko, A.V. Zabelin, and K.S. Napolskii, J. Appl. Crystallogr. 46, 1705 (2013).

    Article  CAS  Google Scholar 

  30. K.S. Napolskii, I.V. Roslyakov, A.Y. Romanchuk, O.O. Kapitanova, A.S. Mankevich, V.A. Lebedev, and A.A. Eliseev, J. Mater. Chem. 22, 11922 (2012).

    Article  CAS  Google Scholar 

  31. W. Yang, Y. Wang, Z. Hou, and C. Li, Nanotechnology 30, 505402 (2019).

    Article  CAS  Google Scholar 

  32. M.-A. Doucey, and S. Carrara, Trends Biotechnol. 37, 86 (2019).

    Article  CAS  Google Scholar 

  33. J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S.R. Plissard, E.P. Bakkers, T.D. Stanescu, and S.M. Frolov, Sci. Adv. 3, 1701476 (2017).

    Article  CAS  Google Scholar 

  34. A. Sadykov, S. Kushnir, I. Roslyakov, A. Baranchikov, and K. Napolskii, Electrochem. Commun. 100, 104 (2019).

    Article  CAS  Google Scholar 

  35. S. Akiya, T. Kikuchi, S. Natsui, and R.O. Suzuki, J. Electrochem. Soc. 162, 244 (2015).

    Article  CAS  Google Scholar 

  36. T. Kikuchi, O. Nishinaga, S. Natsui, and R.O. Suzuki, Electrochim. Acta 137, 728 (2014).

    Article  CAS  Google Scholar 

  37. O. Nishinaga, T. Kikuchi, S. Natsui, and R.O. Suzuki, Sci. Rep. 3, 1 (2013).

    Article  Google Scholar 

  38. Y. Nazarkina, K. Kamnev, A. Polokhin, and Y. Shaman, The effect of annealing on the Raman spectra of porous anodic alumina films formed in different electrolytes. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 1409 (2017).

  39. Y. Nazarkina, S. Gavrilov, A. Polohin, D. Gromov, and Y. Shaman, Application of porous alumina formed in selenic acid solution for nanostructures investigation via Raman spectroscopy. International Conference on Micro-and Nano-Electronics, 102240J (2016).

  40. J.C. Kornelius-Nielsch, K. Schwirn, R.B. Wehrspohn, and U. Gösele, Nano Lett. 2, 677 (2002).

    Article  CAS  Google Scholar 

  41. W. Lee, and S.-J. Park, Chem. Rev. 114, 7487 (2014).

    Article  CAS  Google Scholar 

  42. E.O. Gordeeva, I.V. Roslyakov, and K.S. Napolskii, Electrochim. Acta 307, 13 (2019).

    Article  CAS  Google Scholar 

  43. Y. Nazarkina, K. Kamnev, A. Dronov, A. Dudin, A. Pavlov, and S. Gavrilov, Electrochim. Acta 231, 327 (2017).

    Article  CAS  Google Scholar 

  44. Y. Nazarkina, S. Gavrilov, H. Terryn, M. Petrova, and J. Ustarroz, J. Electrochem. Soc. 162, 166 (2015).

    Article  CAS  Google Scholar 

  45. W.J. Stępniowski, D. Zasada, and Z. Bojar, Surf. Coat. Technol. 206, 1416 (2011).

    Article  CAS  Google Scholar 

  46. G. Sulka, and K.G. Parkoła, Electrochim. Acta 52, 1880 (2007).

    Article  CAS  Google Scholar 

  47. G.D. Sulka, and M. Jaskuła, J. Nanosci. Nanotechnol. 6, 3803 (2006).

    Article  CAS  Google Scholar 

  48. M.A. Kashi, and A. Ramazani, J. Phys. D Appl. Phys. 38, 2396 (2005).

    Article  CAS  Google Scholar 

  49. S. Shingubara, K. Morimoto, H. Sakaue, and T. Takahagi, Electrochem. Solid State Lett. 7, 15 (2004).

    Article  CAS  Google Scholar 

  50. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, Jpn. J. Appl. Phys. 36, 7791 (1997).

    Article  CAS  Google Scholar 

  51. I. Mínguez-Bacho, S. Rodríguez-López, A. Asenjo, M. Vázquez, and M. Hernández-Vélez, Appl. Phys. A 106, 105 (2012).

    Article  CAS  Google Scholar 

  52. S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, and L. Piraux, Thin Solid Films 516, 3735 (2008).

    Article  CAS  Google Scholar 

  53. R. Hillebrand, F. Muller, K. Schwirn, W. Lee, and M. Steinhart, ACS Nano 2, 913 (2008).

    Article  CAS  Google Scholar 

  54. C. Sousa, D. Leitao, M. Proenca, A. Apolinario, J. Correia, J. Ventura, and J. Araujo, Nanotechnology 22, 315602 (2011).

    Article  CAS  Google Scholar 

  55. G.D. Sulka, and W.J. Stępniowski, Electrochim. Acta 54, 3683 (2009).

    Article  CAS  Google Scholar 

  56. F. Li, L. Zhang, and R.M. Metzger, Chem. Mater. 10, 2470 (1998).

    Article  CAS  Google Scholar 

  57. B. Xu, Text. Res. J. 66, 496 (1996).

    Article  CAS  Google Scholar 

  58. W. Lee, R. Ji, U. Gösele, and K. Nielsch, Nat. Mater. 5, 741 (2006).

    Article  CAS  Google Scholar 

  59. M.A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, and P. Marashi, J. Phys. D Appl. Phys. 40, 7032 (2007).

    Article  CAS  Google Scholar 

  60. S.J. Zaidi, and M. Butt, Int. J. Electrochem. Sci. 14, 2984 (2019).

    Article  CAS  Google Scholar 

  61. F.A. Bruera, G.R. Kramer, M.L. Vera, and A.E. Ares, Surf. Interfaces 18, 100448 (2020).

    Article  CAS  Google Scholar 

  62. V. Parkhutik, and V. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Kashan for providing financial support of this work through Grant No. 159023/75.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Almasi Kashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, M., Kashi, M.A., Noormohammadi, M. et al. Self-ordered Porous Anodic Alumina Templates by a Combinatory Anodization Technique in Oxalic and Selenic Acids. Journal of Elec Materi 50, 4787–4796 (2021). https://doi.org/10.1007/s11664-021-08973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08973-x

Keywords

Navigation