Skip to main content
Log in

Scalability of GaN Nanowire FET beyond 5 nm: A Simulation Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, design optimization and performance analysis of GaN nanowire (NW) field effect transistors (FETs) for gate length (Lg) of 3 nm, 5 nm, and 7 nm is performed to evaluate their performance in electronics and biosensing applications. The simulation and modeling are carried out using self-consistent Poisson and Schrodinger equations based on a non-equilibrium Green function (NEGF) approach using Silvaco ATLAS. The simulation results reveal the following: (1) ~ 40.13% increase in the integration density and ~ 33.59% increase in the power density, (2) ~ 25.35% increase in Ion/Ioff ratio for nanowire channel thickness (Tnw) of 1.6 nm and ~ 38.78% increase in Ion/Ioff ratio for Tnw = 80 nm, (3) a way to change the mode of operation from E-mode to D-mode and vice-versa based on Tnw variations, and (4) switching speed gain of 0.78% for NW FETs with Tnw = 1.6 nm and 0.09% for NW FETs with Tnw = 80 nm for gate length scaling of 7 nm to 5 nm and a loss of ~ 0.46% and ~ 0.09% for 7 nm to 3 nm. The device has been designed and optimized for digital applications with an Ion/Ioff ratio of ~ 108 and sensitivity of ~ 21.8 mS for a biosensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.-P. Colinge and J. C. Greer, Nanowire Transistors, Cambridge University Press, (2016).

  2. J. P. Colinge and S. H. Dhong, Prospective for Nanowire Transistors, in Proceedings of the Custom Integrated Circuits Conference (2013).

  3. I. Ferain, C. A. Colinge, and J. P. Colinge, Nature 479, (2011).

  4. M. Karbalaei, D. Dideban, and H. Heidari, Results Phys. 16, (2020).

  5. L. Ansari, B. Feldman, G. Fagas, J. P. Colinge, and J. C. Greer, Appl. Phys. Lett. 97, (2010).

  6. H. Nam, Y. Lee, J. Park, and C. Shin, IEEE Transactions on Electron Devices 63, (2016).

  7. N. Chowdhury, G. Iannaccone, G. Fiori, D.A. Antoniadis, and T. Palacios, IEEE Electron Device Lett. 38, 859 (2017).

    Article  CAS  Google Scholar 

  8. Y. Chu, S.C. Lu, N. Chowdhury, M. Povolotskyi, G. Klimeck, M. Mohamed, and T. Palacios, IEEE Electron Device Lett. 40, 874 (2019).

    Article  CAS  Google Scholar 

  9. S. Vodapally, Y.I. Jang, I.M. Kang, I.T. Cho, J.H. Lee, Y. Bae, G. Ghibaudo, S. Cristoloveanu, K.S. Im, and J.H. Lee, IEEE Electron. Device Lett. 38, 252 (2017).

    Article  CAS  Google Scholar 

  10. D. Nagy, G. Indalecio, A.J. Garcia-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, IEEE J. Electron. Devices Soc. 6, 332 (2018).

    Article  CAS  Google Scholar 

  11. M.I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron. Devices 67, 3568 (2020).

    Article  CAS  Google Scholar 

  12. R.R. Thakur, and P. Singh, J. Nanoelectron. Optoelectron. 14, 92 (2019).

    Article  CAS  Google Scholar 

  13. F.M. Bufler, R. Ritzenthaler, H. Mertens, G. Eneman, A. Mocuta, and N. Horiguchi, IEEE Electron. Device Lett. 39, 1628 (2018).

    Article  CAS  Google Scholar 

  14. B. Hoefflinger, ITRS: The International Technology Roadmap for Semiconductors, (2011).

  15. M.F. Fatahilah, K. Strempel, F. Yu, S. Vodapally, A. Waag, and H.S. Wasisto, Micro Nano Eng. 3, 59 (2019).

    Article  Google Scholar 

  16. R.R. Thakur, and P. Singh, Microelectron. Reliab. 96, 21 (2019).

    Article  CAS  Google Scholar 

  17. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.S.P. Wong, Proc. IEEE 89, 259 (2001).

    Article  CAS  Google Scholar 

  18. Y. Taur, IBM J. Res. Dev. 46, 213 (2002).

    Article  Google Scholar 

  19. P.M. Zeitzoff, and H.R. Huff, AIP Conf. Proc. 788, 203 (2005).

    Article  CAS  Google Scholar 

  20. N. Chowdhury, Q. Xie, M. Yuan, N. S. Rajput, P. Xiang, K. Cheng, H. W. Then, and T. Palacios, First Demonstration of a Self-Aligned GaN p-FET, in Technical Digest - International Electron Devices Meeting, IEDM (2019).

  21. M. Ruzzarin, C. De Santi, F. Yu, M.F. Fatahilah, K. Strempel, H.S. Wasisto, A. Waag, G. Meneghesso, E. Zanoni, and M. Meneghini, Appl. Phys. Lett. 117, 203501 (2020).

    Article  CAS  Google Scholar 

  22. C.P. Chen, A. Ganguly, C.Y. Lu, T.Y. Chen, C.C. Kuo, R.S. Chen, W.H. Tu, W.B. Fischer, K.H. Chen, and L.C. Chen, Anal. Chem. 83, 1938 (2011).

    Article  CAS  Google Scholar 

  23. F. Patolsky, and C.M. Lieber, Mater. Today 8, 20 (2005).

    Article  CAS  Google Scholar 

  24. Z. Wang, S. Lee, K. Koo, and K. Kim, IEEE Trans. Nanobiosci. 15, 186 (2016).

    Article  Google Scholar 

  25. T. C. Nguyen, W. Qiu, M. Altissimo, P. G. Spizzirri, L. H. W. van Beveren, and E. Skafidas, Nanostructures Tech. Appl. 265 (2016).

  26. F. Yang, and G.J. Zhang, Rev. Anal. Chem. 33, 95 (2014).

    Article  CAS  Google Scholar 

  27. P. Ambhorkar, Z. Wang, H. Ko, S. Lee, K. I. Koo, K. Kim, and D. I. D. Cho, Micromachines, 9, (2018).

  28. Li, W., Brubaker, M.D., Bryan, T. Spann, Bertness, K.A., and Patrick, F., IEEE Electron. Device Lett. 39, (2017).

  29. Y. Cai, C. Zhiqun, Y. Zhenchuan, W. T. Chak, M. L. Kei, J. C. Kevin., IEEE Electron. Device Letters 28, (2007).

Download references

Acknowledgements

The authors would like to acknowledge CSIR-CEERI for providing the resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Ranjan Thakur.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R.R., Chaturvedi, N. Scalability of GaN Nanowire FET beyond 5 nm: A Simulation Study. J. Electron. Mater. 50, 4128–4134 (2021). https://doi.org/10.1007/s11664-021-08943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08943-3

Keywords

Navigation