Skip to main content
Log in

Analysis of Electrical and Capacitance–Voltage of PVA/nSi

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study examined polyvinyl alcohol, PVA, in its pure form without any additives. We investigated its application as a Schottky barrier device, which demonstrates the novelty of this research. We report the synthesis, current–voltage (IV) and capacitance–voltage (CV) characteristics, dielectric properties, x-ray diffraction of PVA/nSi. Several parameters, including the ideality factor (n), series resistance (Rs), barrier height (Φb), the saturation current (I0), and shunt resistance (Rsh) were estimated. It was found that the n values decrease with increasing temperature, setting the enhancement of the device features. (Φb) values tend to increase with temperature rise. Frequency, voltage and temperature dependence of electric modulus ((\( M^{\prime}\& M^{\prime\prime} \)) was investigated, showing that \( \left( {M^{\prime}} \right) \) decreases with temperature (T) while the values of \( (M^{'} \)) are increased with frequency (f). But at low frequencies \( (M^{'} ) \,{\text{rises }}\,{\text{when }}\, T\, {\text{is }}\,{\text{raised}}. \,{\text{While }} \) (\( M^{\prime\prime}) \) tends to be reduced with increasing T at (f) = 10 and 103 Hz, with increases at (f) = 2 × 107 Hz. We observed semicircles in the Cole–Cole plots where the radii of curvature increased with temperature and voltage.

Graphic Abstract

I–V characteristic at different temperatures (298–423 K)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Qiao, J. Fu, R. Lin, J. Ma, and J. Liu, Polymer 51, 4850 (2010).

    Article  CAS  Google Scholar 

  2. M. Hema, S. Selvasekerapandian, G. Hirankumar, A. Sakunthala, D. Arunkumar, and H. Nithya, J. Phys. Chem. Solids 70, 1098 (2009).

    Article  CAS  Google Scholar 

  3. T.J. Benedict, S. Banumathi, A. Veluchamy, R. Gangadharan, A.Z. Ahamad, and S. Rajendran, J. Power Sources 75, 171 (1998).

    Article  CAS  Google Scholar 

  4. S. Rajendran, M. Sivakumar, and R. Subadevi, Solid State Ionics 167, 335 (2004).

    Article  CAS  Google Scholar 

  5. A. Wnuk, M. Kaczkan, and Z. Frukaczetal, J. Alloy. Compd. 341, 353 (2002).

    Article  CAS  Google Scholar 

  6. K. Toyoshima, Acetalization of polyvinylalcohol, in Polyvinyl Alcohol Properties and Applications, ed. By C.A. Finch (John Wiley & Sons, London, UK, 1973), p. 391.

  7. S.N. Ege, Organic Chemistry, 5th ed. (Ann Arbor: University of Michigan, 1989).

    Google Scholar 

  8. Kunal Pal, Ajit K. Banthia, and Dipak K. Majumdar, AAPS Pharm. Sci. Tech. 8, E142 (2007).

    Article  Google Scholar 

  9. A.S. Abouhaswa, Y.S. Rammah, and G.M. Turky, J. Mat. Sci: Mat. Elect. 31, 17044 (2020).

    CAS  Google Scholar 

  10. A.M. Fayad, M. Abdel-Baki, E.M. Hamzawy, G.M. Turky, G.T. El-Bassyouni, and J. Non-Cryst, Solids. 544, (2020).

    CAS  Google Scholar 

  11. M. Mahdy, I. El-Zaway, and G. Turky, Current Applied Phys. 19, 787 (2019).

    Article  Google Scholar 

  12. J.C. Géminard, D. Bouraya, and H. Gayvallet, Eur. Phys. 48, 509 (2005).

    Article  Google Scholar 

  13. G.S. Pawley, P.D. Hatton, R.O. Piltz, J.R. MacLean, J. Ackland, and J. Crain, Zeitschriftfuer Kristallographie. 219, 376 (2004).

    Google Scholar 

  14. M. Gökçen, T. Tunç, Ş. Altındal, and I. Uslu, Curr. Appl. Phys. 12, 525 (2012).

    Article  Google Scholar 

  15. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon Press, 1988).

    Google Scholar 

  16. A. Ashery, H. Shaban, S.A. Gad, and B.A. Mansour, Mater. Sci. Semicond. Process. 114, (2020).

    Article  CAS  Google Scholar 

  17. M. Gökçen, Ş. Altındal, M. Karaman, and U.M.U.T. Aydemir, Physica B. 406, 4119 (2011).

    Article  Google Scholar 

  18. I. Dokme, S. Altındal, T. Tunc, and I. Uslu, Microelectronics and Reliability. 50, 39 (2010).

    Article  Google Scholar 

  19. T. Tunc, I. Uslu, I. Dokme, S. Altındal, and H. Uslu, International Journal of PolymericMaterials. 59, 739 (2010).

    Article  CAS  Google Scholar 

  20. Ö. Güllü, Ş. Aydoğan, and A. Türüt, Microelectron. Eng. 85, 1647 (2008).

    Article  Google Scholar 

  21. B. Gunduz, I.S. Yahia, and F. Yakuphanoglu, Microelectron. Eng. 98, 41 (2012).

    Article  CAS  Google Scholar 

  22. M.K. Hudait, S.P. Venkateswarlu, and S.B. Krupanidhi, Iee J. Solid StateElectron Devices. 45, 133 (2001).

    CAS  Google Scholar 

  23. Ş. Karataş, Ş. Altındal, A. Türüt, and A. Özmen, Appl. Surf. Sci. 217, 250 (2003).

    Article  Google Scholar 

  24. A. Ashery, A.A.M. Farag, M.A. Moussa, and G.M. Turky, Synth. Met. 261, (2020).

    Article  CAS  Google Scholar 

  25. A. Ashery, A.A.M. Farag, M.A. Moussa, and G.M. Turky, Materials Science in SemiconductorProcessing. 21, (2021).

    Google Scholar 

  26. H. Çetin and E. Ayyildiz, Physica B Condens. Matter. 405, 559 (2010).

    Article  Google Scholar 

  27. D. Korucu, H. Efeoglu, A. Turut, S. Altindal, Mater. Sci. in Semicond. Process. 15, 480 (2012).

    Article  CAS  Google Scholar 

  28. G. Güler, Ş. Karataş, Ö. Güllü, and Ö.F. Bakkaloğlu, J. Alloys Compd. 486, 343 (2009).

    Article  Google Scholar 

  29. Ö. Demircioglu, Ş. Karataş, N. Yıldırım, and Ö.F. Bakkaloglu, Microelectron. Eng. 88, 2997 (2011).

    Article  CAS  Google Scholar 

  30. G. Murtaza, I. Ahmad, and J. Wu, Mater. Sci. in Semicond. Process. 34, 269 (2015).

    Article  CAS  Google Scholar 

  31. C. Corbella, M. Vives, A. Pinyol, I. Porqueras, C. Person, E. Bertran, Solid StateIonic, 15, 165 (2003).

    Google Scholar 

  32. S.M. Sze, Physics of semiconductor devices (Toronto: Wiley, 1981).

    Google Scholar 

  33. H.C. Card and E.H. Rhoderick, J. Phys. D. 4, 1589 (1971).

    Article  CAS  Google Scholar 

  34. E.H. Nicollian and J.R. Brews, MOS physics and technology (New York: Wiley, 1982).

    Google Scholar 

  35. U. Kelberlau and R. Kassing, Solid-State Electron. 22, 37 (1979).

    Article  Google Scholar 

  36. S. Wageh, A.A. Al-Ghamdi, Y. Al-Turki, A. Dere, S.C. Tjong, F. El-Tantawy, and F. Yakuphanoglu, Opt. Quantum Electron. 47, 1779 (2015).

    Article  CAS  Google Scholar 

  37. J. Szatkowski and K. Sieranski, Solid-State Electron. 35, 1013 (1992).

    Article  CAS  Google Scholar 

  38. N. Konofaos, Microelectron. J. 35, 412 (2004).

    Article  Google Scholar 

  39. B.K. Jones, J. Santana, and M. McPherson, Solid State Commun. 107, 47 (1998).

    Article  CAS  Google Scholar 

  40. N.A. Penin, Semiconductors 30, 340 (1996).

    Google Scholar 

  41. W.Z. Shen and A.G.U. Perera, J. Appl. Phys. 83, 3923 (1998).

    Article  CAS  Google Scholar 

  42. I. S. Yahia, A. A. M. Farag, F. Yakuphanogluc and W. A. Farooq, Synth. Met. 161, 881 (2011).

  43. S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, and İ. Uslu, Results Phys. 6, 180 (2016).

    Article  Google Scholar 

  44. A. Ashery, S.A. Gad, and H. Shaban, Appl. Phys. A 126, 547 (2020).

    Article  CAS  Google Scholar 

  45. S.A. Gad, A.M. Moustafa, and A.A. Ward, J. Inorg. Organomet. Polym. 25, 1077 (2015).

    Article  CAS  Google Scholar 

  46. A. Büyükbaş-Uluşan and A. Tataroglu, Silicon 10, 2071 (2018).

    Article  Google Scholar 

  47. R. Tripathi, A. Kumar, ChBharti, T.P. Sinh, Current Applied Phys. 10, 676 (2010).

  48. İ. Orak, A. Kocyigit, and S. Altındal, Chin. Phys. B 26, (2017).

    Article  Google Scholar 

  49. R. Ertugrul and A. Tataroglu, Chin. Phys. Lett. 29, (2012).

    Article  Google Scholar 

  50. A. Philip, S. Thomas, R. Nisha, and K.R. Kumar, Indian J. Pure Applied Phys. 53, 464 (2015).

    Google Scholar 

  51. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. 133, 43827 (2016).

  52. İ. Taşçıoğlu, Ö.T. Özmen, H.M. Şağban, E. Yağlıoğlu, and Ş. Altındal, J. Electron. Mater. 46, 2379–2386 (2017).

    Article  Google Scholar 

  53. H. Tecimer, J. Mater. Sci.: Mater. Electron. 29, 20141 (2018).

    CAS  Google Scholar 

  54. S. Fang, C.H. Ye, T. Xie, Z.Y. Wong, J.W. Zhao, and L.D. Zhang, Appl. Phys. Lett. 88, (2006).

    Article  Google Scholar 

  55. İ. Yücedağ, A. Kaya, and Ş. Altındal, Int. Mod. Phys. B. 28, 1450153 (2014).

    Article  Google Scholar 

  56. İ. Yücedağ, A. Kaya, and Ş. Altındal, Mater. Sci. Semicond. Process. 28, 37 (2014).

    Article  Google Scholar 

  57. A.K. Jonscher, Universal Relaxation Law (London: Chelsea Dielectric Press, 1996).

    Google Scholar 

  58. F. Yakuphanoğlu, Phys. B 393, 139 (2007).

    Article  Google Scholar 

  59. T.Z. Rizvi and A. Shakoor, J. Phys. D Appl. Phys. 42, (2009).

    Article  Google Scholar 

  60. M. Ram and S. Chakrabarti, J. Alloys Compd. 462, 214 (2008).

    Article  CAS  Google Scholar 

  61. R. Ertuğrul and A. Tataroğlu, Chin. Phys. Lett. 29, (2012).

    Article  Google Scholar 

  62. I.S. Yahia, M.S. Abd El-Sadek, F. Yakuphanoğlu, Dyes Pigments. 93, 1434 (2012).

  63. M.B. Mohamed, H. Wang, and H. Fuess, J. Phys. D Appl. Phys. 43, (2010).

    Article  Google Scholar 

  64. A.K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, and A.K. Meikap, J. Alloy. Compd. 758, 194 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Gad, S.A. & Turky, G.M. Analysis of Electrical and Capacitance–Voltage of PVA/nSi. J. Electron. Mater. 50, 3498–3516 (2021). https://doi.org/10.1007/s11664-021-08867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08867-y

Keywords

Navigation