Skip to main content

Advertisement

Log in

Theoretical Studies on Transport and Photoresponse Properties of a Wheel-and-Axle Architecture Formed by Nitrogen-Doped Graphynes and a Vm(Bz)n Nanowire

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Theoretical studies are carried out on a “wheel-and-axle” architecture, (NDGY)k-Vm(Bz)n, by using density functional theory, nonequilibrium Green’s function (NEGF), and Keldysh nonequilibrium Green’s function (KNEGF) methods. Here, (NDGY)k and Vm(Bz)n denote the wheels formed by nitrogen-doped graphynes and the axle formed by a one-dimensional (1D) vanadium benzene nanowire, respectively. The electronic structure, transport property, and linear photoresponse of (NDGY)k-Vm(Bz)n are investigated. Within the range of 0.0 ~ 1.0 V except at 0.5 V and 0.6 V bias voltages, (NDGY)k-Vm(Bz)n shows a spin polarized transport character as the minority spin state serving as the primary transport path. The spin filter efficiency (SFE) of (NDGY)k-Vm(Bz)n can reach 100%, suggesting a good candidate for spin filter. Interestingly, a nonpolarized transport character is found at 0.5 V and 0.6 V bias voltages owing to the opening of the majority spin channel and leading to a negative differential resistance behavior entailing it for making electronic oscillators, electronic switches, and spin switches. When applied light irradiation, the minority spin state gives rise to stronger photoresponse than the majority spin state. Moreover, the magnitude of photoresponse can be tuned by the photon energy. All of these fascinating properties of (NDGY)k-Vm(Bz)n give a clue toward exploring new wheel-and-axle architectures with potential applications in electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: A Journey into the Nano World, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG, pp. 1–18 (2003)

  2. J.E.M. Lewis, M. Galli, and S.M. Goldup, Chem. Commun. 53, 298 (2017).

    Article  CAS  Google Scholar 

  3. H. Yu, Y. Luo, K. Beverly, J.F. Stoddart, H. Tseng, and J.R. Heath, Angew. Chem. Int. Ed. 42, 5706 (2003).

    Article  CAS  Google Scholar 

  4. J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Halperin, E. Delonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H. Tseng, J.F. Stoddart, and J.R. Heath, Nature 445, 414 (2007).

    Article  CAS  Google Scholar 

  5. S. Kassem, A.T.L. Lee, D.A. Leigh, V. Marcos, L.I. Palmer, and S. Pisano, Nature 549, 374 (2017).

    Article  CAS  Google Scholar 

  6. Y. Cakmak, S. Erbas-Cakmak, and D.A. Leigh, J. Am. Chem. Soc. 138, 1749 (2016).

    Article  CAS  Google Scholar 

  7. S. Hoekman, M.O. Kitching, D.A. Leigh, M. Papmeyer, and D. Roke, J. Am. Chem. Soc. 137, 7656 (2015).

    Article  CAS  Google Scholar 

  8. V. Blanco, D.A. Leigh, and V. Marcos, Chem. Soc. Rev. 44, 5341 (2015).

    Article  CAS  Google Scholar 

  9. V. Blanco, D.A. Leigh, U. Lewandowska, B. Lewandowski, and V. Marcos, J. Am. Chem. Soc. 136, 15775 (2014).

    Article  CAS  Google Scholar 

  10. D. Zhao, T.M. Neubauer, and B.L. Feringa, Nat. Commun. 6, 6652 (2015).

    Article  CAS  Google Scholar 

  11. R.B. Stuart, and R. Robson, Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Weinheim: Wiley, 1999), pp. 77–106

    Google Scholar 

  12. R.M. Caira, R.L. Nassimbeni, F. Toda, and D. Vujovic, J. Chem. Soc. Perkin Trans. 2, 2681 (1999).

    Article  Google Scholar 

  13. R.K.R. Jetti, F. Xue, W.C.T. Mak, and A. Nangia, J. Chem. Soc. Perkin Trans. 2, 1223 (2000).

    Article  Google Scholar 

  14. Q. Yue, S.L. Chang, J. Kang, S.Q. Qin, and J.B. Li, J. Phys. Chem. C. 117, 14804 (2013).

    Article  CAS  Google Scholar 

  15. M.M. Haley, Pure Appl. Chem. 80, 519 (2008).

    Article  CAS  Google Scholar 

  16. T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, and R.V. Williams, Org. Lett. 8, 2933 (2006).

    Article  CAS  Google Scholar 

  17. X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Dalton Trans. 41, 730 (2012).

    Article  CAS  Google Scholar 

  18. J.M. Kehoe, J.H. Kiley, J.J. English, C.A. Johnson, R.C. Petersen, and M.M. Haley, Org. Lett. 2, 969 (2000).

    Article  CAS  Google Scholar 

  19. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  CAS  Google Scholar 

  20. H. Liu, J. Xu, Y. Li, and Y. Li, Acc. Chem. Res. 43, 1496 (2010).

    Article  CAS  Google Scholar 

  21. M. Kondo, D. Nozaki, M. Tachibana, T. Yumura, and K. Yoshizawa, Chem. Phys. 312, 289 (2005).

    Article  CAS  Google Scholar 

  22. N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Phys. Rev. B. 58, 11009 (1998).

    Article  CAS  Google Scholar 

  23. M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, ACS Nano 5, 2593 (2011).

    Article  CAS  Google Scholar 

  24. Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, and J. Lu, Nanoscale 4, 3990 (2012).

    Article  CAS  Google Scholar 

  25. G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W.N. Mei, and J. Lu, Phys. Rev. B. 84, 075439 (2011).

    Article  Google Scholar 

  26. Y. Guo, K. Jiang, B. Xu, Y. Xia, J. Yin, and Z. Liu, J. Phys. Chem. C. 116, 13837 (2012).

    Article  CAS  Google Scholar 

  27. K. Srinivasu, and S.K. Ghosh, J. Phys. Chem. C. 116, 5951 (2012).

    Article  CAS  Google Scholar 

  28. S.W. Cranford, and M.J. Buehler, Nanoscale 4, 4587 (2012).

    Article  CAS  Google Scholar 

  29. Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S.C. Smith, Chem. Commun. 47, 11843 (2011).

    Article  CAS  Google Scholar 

  30. A.N. Enyashin, and A.L. Ivanovskii, Phys. Status Solidi. B. 248, 1879 (2011).

    Article  CAS  Google Scholar 

  31. M.T. Lusk, and L.D. Carr, Carbon 47, 2226 (2009).

    Article  CAS  Google Scholar 

  32. N.V.R. Nulakani, M. Kamaraj, and V. Subramanian, RSC Adv. 5, 78910 (2015).

    Article  Google Scholar 

  33. A.L. Ivanovskii, Prog. Solid State Chem. 41, 1 (2013).

    Article  CAS  Google Scholar 

  34. Y.Y. Zhang, Q.X. Pei, and C.M. Wang, Comput. Mater. Sci. 65, 406 (2012).

    Article  CAS  Google Scholar 

  35. C.C. Zhao, S.H. Tan, Y.H. Zhou, R.J. Wang, X.J. Wang, and K.Q. Chen, Carbon 113, 170 (2017).

    Article  CAS  Google Scholar 

  36. B. Bhattacharya, and U. Sarkar, J. Phys. Chem. C. 120, 26793 (2016).

    Article  CAS  Google Scholar 

  37. D. Malko, C. Neiss, F. Vines, and A. Gorling, Phys. Rev. B. 86, 045443 (2012).

    Article  Google Scholar 

  38. P. Weis, P.R. Kemper, and M.T. Bowers, J. Phys. Chem. A. 101, 8207 (1997).

    Article  CAS  Google Scholar 

  39. T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima, and K. Kaya, Organometallics 18, 1430 (1999).

    Article  CAS  Google Scholar 

  40. A. Nakajima, and K. Kaya, J. Phys. Chem. A. 104, 176 (2000).

    Article  CAS  Google Scholar 

  41. K. Hoshino, T. Kurikawa, H. Takeda, A. Nakajima, and K. Kaya, J. Phys. Chem. 99, 3053 (1995).

    Article  CAS  Google Scholar 

  42. R. Pandey, B.K. Rao, P. Jena, and J.M. Newsam, Chem. Phys. Lett. 321, 142 (2000).

    Article  CAS  Google Scholar 

  43. R. Pandey, B.K. Rao, P. Jena, and M.A. Blanco, J. Am. Chem. Soc. 123, 3799 (2001).

    Article  CAS  Google Scholar 

  44. K. Miyajima, A. Nakajima, S. Yabushita, M.B. Knickelbein, and K. Kaya, J. Am. Chem. Soc. 126, 13202 (2004).

    Article  CAS  Google Scholar 

  45. A.K. Kandalam, B.K. Rao, P. Jena, and R. Pandey, J. Chem. Phys. 120, 10414 (2004).

    Article  CAS  Google Scholar 

  46. J. Wang, P.H. Acioli, and J. Jellinek, J. Am. Chem. Soc. 127, 2812 (2005).

    Article  CAS  Google Scholar 

  47. K. Miyajima, S. Yabushita, M.B. Knickelbein, and A. Nakajima, J. Am. Chem. Soc. 129, 8473 (2007).

    Article  CAS  Google Scholar 

  48. J. Wang, and J. Jellinek, J. Phys. Chem. A. 109, 10180 (2005).

    Article  CAS  Google Scholar 

  49. W. Zheng, J.M. Nilles, O.C. Thomas, and K.H. Bowen Jr., Chem. Phys. Lett. 401, 266 (2005).

    Article  CAS  Google Scholar 

  50. J. Kua, and K.M. Tomlin, J. Phys. Chem. A. 110, 11988 (2006).

    Article  CAS  Google Scholar 

  51. Y. Mokrousov, N. Atodiresei, G. Bihlmayer, and S. Blugel, J. Quantum Chem. 106, 3208 (2006).

    Article  CAS  Google Scholar 

  52. M.M. Rahman, H. Kasai, and E.S. Dy, J. Appl. Phys. 44, 7954 (2005).

    Article  CAS  Google Scholar 

  53. H. Xiang, J. Yang, J.G. Hou, and Q. Zhu, J. Am. Chem. Soc. 128, 2310 (2006).

    Article  CAS  Google Scholar 

  54. V.V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Phys. Rev. Lett. 97, 097201 (2006).

    Article  Google Scholar 

  55. L. Shen, W.S. Yang, F.M. Ng, V. Ligatchev, L. Zhou, and Y. Feng, J. Am. Chem. Soc. 130, 13956 (2008).

    Article  CAS  Google Scholar 

  56. L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, N.W. Mei, and S. Sanvito, Nano Lett. 8, 36403644 (2008).

    Google Scholar 

  57. S. Nagao, A. Kato, and A. Nakajima, J. Am. Chem. Soc. 122, 4221 (2000).

    Article  CAS  Google Scholar 

  58. Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Heinze, and S. Blugel, Nanotechnology 18, 495402 (2007).

    Article  CAS  Google Scholar 

  59. H. Weng, T. Ozaki, and K. Terakura, J. Phys. Soc. Jpn. 77, 014301 (2008).

    Article  Google Scholar 

  60. M. Koleini, M. Paulsson, and M. Brandbyge, Phys. Rev. Lett. 98, 197202 (2006).

    Article  Google Scholar 

  61. X. Zhang, and J. Wang, J. Phys. Chem. A. 114, 2319 (2010).

    Article  CAS  Google Scholar 

  62. D.V. Soldatov, I.L. Moudrakovski, C.I. Ratcliffe, R. Dutrisac, and J.A. Ripmeester, Chem. Mater. 15, 4810 (2003).

    Article  CAS  Google Scholar 

  63. ATK, Version 13.8, atomistix a/s, www.quantumwise.com (2013)

  64. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 165401 (2002).

    Article  Google Scholar 

  65. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter. 14, 2745 (2002).

    Article  CAS  Google Scholar 

  66. L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, W.N. Mei, and S. Sanvito, Nano Lett 8, 3640 (2008).

    Article  CAS  Google Scholar 

  67. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996).

    Article  CAS  Google Scholar 

  68. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B: Condens. Matter Mater. Phys. 63, 245407 (2001).

    Article  Google Scholar 

  69. D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Phys. Rev. Lett 96, 166804 (2006).

    Article  Google Scholar 

  70. X. Liu, Y.Z. Tan, Z.Y. Ma, and Y. Pei, J. Phys. Chem. C 120, 27980 (2016).

    Article  CAS  Google Scholar 

  71. L. Zhang, K. Gong, J. Chen, L. Liu, D. Xiao, and H. Guo, Phys. Rev. B Condens. Matter Mater. Phys. 90, 195428 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Nature Science Foundation of Heilongjiang Province of China (Grant No. B2018007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiling Zhang or Yan Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Yu, H., Zhang, G. et al. Theoretical Studies on Transport and Photoresponse Properties of a Wheel-and-Axle Architecture Formed by Nitrogen-Doped Graphynes and a Vm(Bz)n Nanowire. J. Electron. Mater. 50, 3634–3644 (2021). https://doi.org/10.1007/s11664-021-08857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08857-0

Keywords

Navigation