Skip to main content
Log in

Porous Carbon Spheres with Ultra-fine Fe2N Active Phase for Efficient Electrocatalytic Oxygen Reduction

  • Topical Collection: Carbon-Based Materials for Energy Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, hierarchically porous carbon spheres co-doped by iron and nitrogen were synthesized via in situ dehalogenation. The rich porous structure and relatively high specific surface area (210 m2/g) facilitate the formation of an ultra-fine Fe2N active phase and FeN4 active centers within the carbon matrix. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis further reveal the presence of a dominant Fe2N phase and minor FeN4 bonds in the as-prepared Fe-N-C-pd-800 samples. Because of this, the oxygen reduction reaction (ORR) process can more readily take place on Fe2N than on FeN4, and the Fe2N phase enriched Fe-N-C-pd-800 carbon spheres exhibit a promising onset potential (Eonset=1.02 V) and half-wave potential (E1/2=0.86 V) in alkaline media. In addition, Fe-N-C-pd-800 also shows excellent methanol resistance and long-cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Sun, D. Davenport, H. Liu, Qu. Jiuhui, M. Elimelech, and J. Li, J. Mater. Chem. A 6, 2527 (2018).

    Article  CAS  Google Scholar 

  2. J.K. Seok, M. Javeed, K. Changmin, H. Gaofeng, W.K. Seong, J. Sunmin, Z. Guomin, J.J. De Yoreo, K. Guntae, and B.B. Jong, J. Am. Chem. Soc. 140, 1737 (2018).

    Article  Google Scholar 

  3. A.M. Rasol, A.F. Azam, and B. Maliheh, J. Electron. Mater. 48, 2971 (2019).

    Article  Google Scholar 

  4. Y. Li, F. Li, Y. Zhao, S. Li, J. Zeng, H. Yao, and Yu. Chen, J. Mater. Chem. A 7, 20658 (2019).

    Article  CAS  Google Scholar 

  5. Y. Li, F. Li, X. Meng, Wu. Xinru, S. Li, and Yu. Chen, Nano Energy 54, 238 (2018).

    Article  CAS  Google Scholar 

  6. L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang, F. Mo, Q. Yang, J. Su, Y. Gao, J.A. Zapien, and C. Zhi, ACS Nano 12, 1949 (2018).

    Article  CAS  Google Scholar 

  7. R.A. Mirzaie, A.A. Firooz, and N.M. Khori, J. Electron. Mater. 47, 6995 (2018).

    Article  Google Scholar 

  8. H. Tan, Y. Li, X. Jiang, J. Tang, Z. Wang, H. Qian, P. Mei, V. Malgras, Y. Bando, and Y. Yamauchi, Nano Energy 36, 286 (2017).

    Article  CAS  Google Scholar 

  9. L. Cao, Z. Lin, J. Huang, Yu. Xiang, Wu. Xiaoxian, B. Zhang, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Xie, W. Mai, and H. Meng, Int. J. Hydrogen Energy. 42, 876 (2017).

    Article  CAS  Google Scholar 

  10. Y.J. Sa, D.J. Seo, J. Woo, J.T. Lim, J.Y. Cheon, S.Y. Yang, J.M. Lee, D. Kang, T.J. Shin, H.S. Shin, H.Y. Jeong, C.S. Kim, M.G. Kim, T.Y. Kim, and S.H. Joo, J. Am. Chem. Soc. 138, 15046 (2016).

    Article  CAS  Google Scholar 

  11. F. Meng, Z. Wang, H. Zhong, J. Wang, J. Yan, and X. Zhang, Adv. Mater. 28, 7948 (2016).

    Article  CAS  Google Scholar 

  12. X. Cui, S. Yang, X. Yan, J. Leng, S. Shuang, P.M. Ajayan, and Z. Zhang, Adv. Funct. Mater. 26, 5708 (2016).

    Article  CAS  Google Scholar 

  13. W. Jiang, Gu. Lin, Li. Li, Y. Zhang, X. Zhang, L. Zhang, J. Wang, Hu. Jinsong, Z. Wei, and L. Wan, J. Am. Chem. Soc. 138, 3570 (2016).

    Article  CAS  Google Scholar 

  14. J. Wang, Wu. Haihua, D. Gao, S. Miao, G. Wang, and X. Bao, Nano Energy 13, 387 (2015).

    Article  CAS  Google Scholar 

  15. D. Zhou, L. Yang, L. Yu, J. Kong, X. Yao, W. Liu, Z. Xu, and X. Lu, Nanoscale 7, 1501 (2015).

    Article  CAS  Google Scholar 

  16. Ji. Liang, R. Zhou, and X. Chen, Adv. Mater. 26, 6074 (2014).

    Article  CAS  Google Scholar 

  17. L. Lin, Q. Zhu, and X. Anwu, J. Am. Chem. Soc. 136, 11027 (2014).

    Article  CAS  Google Scholar 

  18. U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, and S. Mukerjee, J. Phys. Chem. C. 118, 8999 (2014).

    Article  CAS  Google Scholar 

  19. Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, Xu. Lin, and Y. Tan, Adv. Mater. 31, e1806312 (2019).

    Article  Google Scholar 

  20. J. Li, S. Li, Y. Tang, M. Han, Z. Dai, J. Bao, and Y. Lan, Chem. Commun. 51, 2710 (2015).

    Article  CAS  Google Scholar 

  21. Z. Zhang, J. Sun, F. Wang, and L. Dai, Angew. Chem. Int. Ed. 57, 9038 (2018).

    Article  CAS  Google Scholar 

  22. W. Yan, W. Cheong, R. Shen, Fu. Ninghua, Gu. Lin, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li, and Y. Li, Adv. Mater. 30, e1800588 (2018).

    Article  Google Scholar 

  23. W.J. Jiang, H. Weili, Q. Zhang, T. Zhao, H. Luo, X. Zhang, Gu. Lin, Hu. Jinsong, and L. Wan, Chem. Commu. 54, 1307 (2018).

    Article  CAS  Google Scholar 

  24. Y. Qiao, P. Yuan, Hu. Yongfeng, J. Zhang, Mu. Shichun, J. Zhou, H. Li, H. Xia, J. He, and Xu. Qun, Adv. Mater. 30, e1804504 (2018).

    Article  Google Scholar 

  25. Z. Guan, X. Zhang, W. Chen, J. Pei, Di. Liu, Y. Xue, W. Zhu, and Z. Zhuang, Chem. Commun. 54, 12073 (2018).

    Article  CAS  Google Scholar 

  26. R. Jiang, Li. Li, T. Sheng, Hu. Gaofei, Y. Chen, and L. Wang, J. Am. Chem. Soc. 140, 11594 (2018).

    Article  CAS  Google Scholar 

  27. J. Wei, Y. Liang, Y. Hu, B. Kong, G.P. Simon, J. Zhang, S.P. Jiang, and H. Wang, Angew. Chem. Int. Ed. 55, 1355 (2016).

    Article  CAS  Google Scholar 

  28. Wu. Zhenyu, Xu. Xingxing, Hu. Bicheng, H. Liang, Y. Lin, L. Chen, and Yu. ShuHong, Angew. Chem. Int. Ed. 54, 8179 (2015).

    Article  Google Scholar 

  29. G. Yang, W. Choi, X. Pub, and Yu. Choongho, Energy Environ. Sci. 8, 1799 (2015).

    Article  CAS  Google Scholar 

  30. Y. Wang, N. Guo, L. Zhu, Y. Pan, R. Wang, Z. Zhang, and S. Qiu, Chem. Commun. 54, 12974 (2018).

    Article  CAS  Google Scholar 

  31. C. Cheng, S. Li, Yi. Xia, L. Ma, C. Nie, C. Roth, A. Thomas, and R. Haag, Adv. Mater. 30, 1802669 (2018).

    Article  Google Scholar 

  32. Hu. Bicheng, Wu. Zhenyu, S. Chu, H. Zhu, H. Liang, J. Zhang, and Yu. Shuhong, Energy Environ. Sci. 11, 2208 (2018).

    Article  Google Scholar 

  33. J. Han, H. Bao, J. Wang, L. Zheng, S. Sune, Z.L. Wang, and C. Sun, Appl. Catal. B 280, 119411 (2021).

    Article  CAS  Google Scholar 

  34. L. Jiang, J. Duan, J. Zhu, S. Chen, and M. Antonietti, ACS Nano 14, 2436 (2020).

    Article  CAS  Google Scholar 

  35. D. Lei, G. Zhang, X. Liu, A. Hassanpour, M. Dubois, A. Tavares, and S. Sun, Carbon Energy 2, 561 (2020).

    Article  Google Scholar 

  36. X. Yan, Yi. Jia, K. Wang, Z. Jin, C. Dong, Y. Huang, J. Chen, and X. Yao, Carbon Energy 2, 452 (2020).

    Article  CAS  Google Scholar 

  37. R. Paul, Q. Dai, Hu. Chuangang, and L. Dai, Carbon Energy 1, 19 (2019).

    Article  Google Scholar 

  38. Y. Lou, J. Liu, M. Liu, and F. Wang, ACS Catal. 10, 2443 (2020).

    Article  CAS  Google Scholar 

  39. H. Jin, X. Feng, J. Li, M. Li, Y. Xia, Y. Yuan, C. Yang, B. Dai, Z. Lin, J. Wang, Lu. Jun, and S. Wang, Angew. Chem. Int. Ed. 58, 2397 (2019).

    Article  CAS  Google Scholar 

  40. C. Cui, Y. Gao, J. Li, C. Yang, M. Liu, H. Jin, Z. Xia, L. Dai, Y. Lei, J. Wang, and S. Wang, Angew. Chem. Int. Ed. 59, 7928 (2020).

    Article  CAS  Google Scholar 

  41. C. Yang, H. Jin, C. Cui, J. Li, J. Wang, K. Amine, Lu. Jun, and S. Wang, Nano Energy 54, 192 (2018).

    Article  CAS  Google Scholar 

  42. Lu. Huihang, C. Yang, J. Chen, J. Li, H. Jin, J. Wang, S. Wang, and T.H.P. Nitrogen-, Small 16, 1906584 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51872209, 51772219), the Zhejiang Provincial Natural Science Foundation of China (LZ17E020002, LZ21E020001) and Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary file 1 (PDF 971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wang, M., Huang, H. et al. Porous Carbon Spheres with Ultra-fine Fe2N Active Phase for Efficient Electrocatalytic Oxygen Reduction. J. Electron. Mater. 50, 3078–3083 (2021). https://doi.org/10.1007/s11664-021-08824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08824-9

Keywords

Navigation