Skip to main content
Log in

Highly Efficient Electrocatalyst of Pt Electrodeposited on Modified Carbon Substrate with Ni/ZnO for Methanol Oxidation Reaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni/ZnO with different molar ratios were synthesized by a simple hydrothermal method and used as substrate in the reaction layer of gas diffusion electrodes for a platinum electrodeposition electrocatalyst. Cyclic voltammetry technique was used for platinum electrodeposition on prepared substrate. The physicochemical characterization of the optimized electrocatalyst was done by scanning electron microscopy, x-ray diffraction, and energy-dispersive x-ray. The electrochemical characterization of the platinum electrodeposited on modified carbon substrate with Ni/ZnO particles were studied at a range of Ni concentration in substrate of electrocatalyst by using cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. The results show that the Ni has a significant effect on performance of prepared electrocatalyst for methanol oxidation reactions (MOR). The presence of 50 wt.% Ni into ZnO in modified carbon substrate shows the good distribution of platinum nanoparticles on the substrate, which generates more active sites for MOR. In addition, the electrochemical surface area of this electrocatalyst reached 105.6 m2 g−1, which was higher than that of commercial Pt/C electrocatalyst (32.45 m2 g−1). The impact of these factors leads to high catalytic activity for MOR. Since methanol can be used as fuel in future portable fuel cells, the synthesized electrocatalysts can provide good conditions for methanol oxidation reactions in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, W. Wang, Z. Deng, H. Zhu, S. Wei, S.-P. Ng, W. Guo, and C.-M.L. Wu, RSC Adv. 6, 1729 (2016).

    Article  Google Scholar 

  2. H. Kunitomo, H. Ishitobi, and N. Nakagawa, J. Power Sour. 297, 400 (2015).

    Article  Google Scholar 

  3. Y. Cheng, P.K. Shen, and S.P. Jiang, Int. J. Hydrog. Energy 41, 1935 (2016).

    Article  Google Scholar 

  4. A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubian, E. Martínez, and F.J. Rodríguez-Varela, Appl. Catal B: Environ. 209, 455 (2017).

    Article  Google Scholar 

  5. T. Saida, N. Ogiwara, Y. Takasu, and W. Sugimoto, J. Phys. Chem. C 114, 13390 (2010).

    Article  Google Scholar 

  6. R. Chang, L. Zheng, C. Wang, D. Yang, G. Zhang, and S. Sun, Appl. Catal. B: Environ. 211, 205 (2017).

    Article  Google Scholar 

  7. X. Li, H. Wang, H. Yu, Z. Liu, H. Wang, and F. Peng, Electrochim. Acta 185, 178 (2015).

    Article  Google Scholar 

  8. J. Hosseini, M. Abdolmaleki, H.R. Pouretedal, and M.H. Keshavarz, Chin. J. Catal. 36, 1029 (2015).

    Article  Google Scholar 

  9. X. Chen, C. Si, Y. Gao, J. Frenzel, J. Sun, G. Eggeler, and Z. Zhang, J. Power Sour. 273, 324 (2015).

    Article  Google Scholar 

  10. J. Ju, X. Chen, Y. Shi, D. Wu, and P. Hua, J. Ind. Eng. Chem. 20, 1223 (2014).

    Article  Google Scholar 

  11. O. Akyıldırım, H. Yüksek, H. Saral, İ. Ermiş, T. Eren, and M.L. Yola, J. Mater. Sci.: Mater. Electron. 27, 8559 (2016).

    Google Scholar 

  12. S.N. Ab Malek and Y. Mohd, Int. J. Electrochem. Sci. 12, 1561 (2017).

    Article  Google Scholar 

  13. A.M. El-Sawy, H. Tasnim, A.G. Meguerdichian, J. Jin, J.P. Dubrosky, and S.L. Suib, Inorg. Chem. 57, 9977 (2018).

    Article  Google Scholar 

  14. J. Pfrommer, M. Lublow, A. Azarpira, C. Gobel, M. Lucke, A. Steigert, M. Pogrzeba, P.W. Menezes, A. Fischer, T. Schedel-Niedrig, and M. Driess, Angew. Chem. Int. Ed. 53, 5183 (2014).

    Google Scholar 

  15. J. Liu, B. Chen, Z. Ni, Y. Deng, X. Han, W. Hu, and C. Zhong, Chem. Electro. Chem. 3, 537 (2016).

    Google Scholar 

  16. M. Nischk, P. Mazierski, Z. Wei, K. Siuzdak, N.A. Kouame, E. Kowalska, H. Remita, and A. Zaleska-Medynsk, Appl. Surf. Sci. 387, 89 (2016).

    Article  Google Scholar 

  17. T. Takashima, T. Sano, and H. Irie, Electrochemistry 84, 784 (2016).

    Article  Google Scholar 

  18. K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M.N. Banis, P. Zhang, F. Li, J. Li, and L. Chen, NPG Asia Mater. 7, e153 (2015).

    Article  Google Scholar 

  19. T.-Y. Yung, J.-Y. Lee, and L.-K. Liu, Sci. Technol. Adv. Mater. 14, 03500 (2013).

    Article  Google Scholar 

  20. H. Wang, X. Wang, J. Zheng, F. Peng, and H. Yu, Chin. J. Catal. 35, 1687 (2014).

    Article  Google Scholar 

  21. C.S. Sharma, A.S.K. Sinha, and R.N. Singh, Int. J. Hydrog. Energy 39, 20151 (2014).

    Article  Google Scholar 

  22. S. Trasatti and O.A. Petrii, J. Electroanal. Chem. 327, 353 (1992).

    Article  Google Scholar 

  23. P.K. Shen, C. Xu, R. Zeng, and Y. Liu, Electrochem. Solid-State Lett. 9, A39 (2006).

    Article  Google Scholar 

  24. A. Banisharif, S. Hakim Elahi, A. Anaraki Firooz, A.A. Khodadadi, and Y. Mortazavi, Int. J. Nanosci. Nanotechnol. 9, 193 (2013).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Fuel Cell Research Laboratory (FCRL) of Shahid Rajaee Teacher Training University (Tehran, Iran).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rasol Abdullah Mirzaie or Azam Anaraki Firooz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah Mirzaie, R., Anaraki Firooz, A. & Bakhtiari, M. Highly Efficient Electrocatalyst of Pt Electrodeposited on Modified Carbon Substrate with Ni/ZnO for Methanol Oxidation Reaction. J. Electron. Mater. 48, 2971–2977 (2019). https://doi.org/10.1007/s11664-019-07054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07054-4

Keywords

Navigation