Skip to main content
Log in

In Situ Fabrication of CdS/ZnTe Heterojunction Diodes by Pulsed Laser Deposition

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heterojunctions made of n-type cadmium sulfide (CdS) and p-type zinc telluride (ZnTe) thin films with rectifying behavior have been developed using an in situ approach based on pulsed laser deposition (PLD). The structure of the CdS and ZnTe thin films was observed by x-ray diffraction (XRD) analysis. Optical and electrical characterization of the semiconductor films and fabricated diodes is also reported herein. For this purpose, a set of CdS/ZnTe diodes was fabricated with circular gold contacts of varying diameters from 100 µm to 300 µm. The carrier concentrations of the semiconductor layers were determined using a Hall-effect measurement system, yielding values of 5.26 × 1018 cm−3 and 3.5 × 1013 cm−3 for CdS and ZnTe, respectively. Current–voltage (IV) characteristic curves were used to observe the typical rectifier behavior over three orders of magnification. In addition, other parameters were obtained from the IV curves, such as the density current, saturation current, series resistance, threshold voltage, and ideality factor. Also, capacitance–voltage (CV) characteristic curves allowed the determination of the following parameters: depletion width, built-in voltage, and donor concentration. According to the results, such n-type CdS/p-type ZnTe heterojunctions with rectifying behavior could find potential applications in the development of photodetectors by modifying the difference in carrier concentration between the two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Gao, Y. Zhao, L. Cai, P. Liu, Z. Liang, and H. Shen, B. Gao, Y. Zhao, L. Cai, P. Liu, Z. Liang, and H. Shen, Sol. Energy, 2018, 173, p 635.

    Article  CAS  Google Scholar 

  2. M. Shkir, I.M. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, and S. AlFaify, M. Shkir, I.M. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, and S. AlFaify, Sens. Actuators A Phys., 2020, 306, p 111952.

    Article  CAS  Google Scholar 

  3. L. Arun Raja, P. Thirumoorthy, A. Karthik, R. Subramanian, and V. Rajendran, L. Arun Raja, P. Thirumoorthy, A. Karthik, R. Subramanian, and V. Rajendran, J. Alloys Compd., 2017, 706, p 470.

    Article  CAS  Google Scholar 

  4. J. Hiie, T. Dedova, V. Valdna, and K. Muska, J. Hiie, T. Dedova, V. Valdna, and K. Muska, Thin Solid Films, 2006, 511–512, p 443.

    Article  Google Scholar 

  5. E. Alkuam, M. Mohammed, and T.-P. Chen, E. Alkuam, M. Mohammed, and T.-P. Chen, Sol. Energy, 2017, 157, p 342.

    Article  CAS  Google Scholar 

  6. K. Ravichandran, N. Nisha Banu, V. Senthamil Selvi, B. Muralidharan, and T. Arun, K. Ravichandran, N. Nisha Banu, V. Senthamil Selvi, B. Muralidharan, and T. Arun, J. Alloys Compd, 2016, 687, p 402.

    Article  CAS  Google Scholar 

  7. C.D. Nascimento, E. Granemann Souza, and C. Aguzzoli, C.D. Nascimento, E. Granemann Souza, and C. Aguzzoli, Thin Solid Films, 2018, 651, p 39.

    Article  CAS  Google Scholar 

  8. K. Yoshino, A. Memon, M. Yoneta, K. Ohmori, H. Saito, and M. Ohishi, K. Yoshino, A. Memon, M. Yoneta, K. Ohmori, H. Saito, and M. Ohishi, Phys. Status Solidi, 2002, 229, p 977.

    Article  CAS  Google Scholar 

  9. S.A. Maki, and H.K. Hassun, S.A. Maki, and H.K. Hassun, J. Phys. Conf. Ser., 2018, 1003, p 012085.

    Article  Google Scholar 

  10. J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, and C.A. Wolden, J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, and C.A. Wolden, Sol. Energy Mater. Sol. Cells, 2015, 133, p 208.

    Article  CAS  Google Scholar 

  11. H. Singh, T. Singh, and J. Sharma, H. Singh, T. Singh, and J. Sharma, ISSS J. Micro Smart Syst., 2018, 7, p 123.

    Article  Google Scholar 

  12. T. Ota, K. Kobayashi, and K. Takahashi, T. Ota, K. Kobayashi, and K. Takahashi, J. Appl. Phys., 1974, 45, p 1750.

    Article  CAS  Google Scholar 

  13. T. Ota, K. Kobayashi, and K. Takahashi, T. Ota, K. Kobayashi, and K. Takahashi, Solid State Electron., 1972, 15, p 1387.

    Article  CAS  Google Scholar 

  14. F. Pfisterer, and H.W. Schock, F. Pfisterer, and H.W. Schock, J. Cryst. Growth, 1982, 59, p 432.

    Article  CAS  Google Scholar 

  15. W. Wang, J.D. Phillips, S.J. Kim, and X. Pan, W. Wang, J.D. Phillips, S.J. Kim, and X. Pan, J. Electron. Mater., 2011, 40, p 1674.

    Article  CAS  Google Scholar 

  16. G.K. Rao, K.V. Bangera, and G.K. Shivakumar, G.K. Rao, K.V. Bangera, and G.K. Shivakumar, Solid State Electron., 2010, 54, p 787.

    Article  CAS  Google Scholar 

  17. G.K. Rao, K.V. Bangera, and G.K. Shivakumar, G.K. Rao, K.V. Bangera, and G.K. Shivakumar, Solid State Electron., 2011, 56, p 100.

    Article  CAS  Google Scholar 

  18. E. Zielony, K. Olender, E. Płaczek-Popko, T. Wosiński, A. Racino, Z. Gumienny, G. Karczewski, and S. Chusnutdinow, E. Zielony, K. Olender, E. Płaczek-Popko, T. Wosiński, A. Racino, Z. Gumienny, G. Karczewski, and S. Chusnutdinow, J. Appl. Phys., 2014, 115, p 244501.

    Article  Google Scholar 

  19. O.I. Olusola, H.I. Salim, and I.M. Dharmadasa, O.I. Olusola, H.I. Salim, and I.M. Dharmadasa, Mater. Res. Express, 2016, 3, p 095904.

    Article  Google Scholar 

  20. O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf, and I.M. Dharmadasa, O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf, and I.M. Dharmadasa, Curr. Appl. Phys., 2016, 16, p 120.

    Article  Google Scholar 

  21. K.S. Lee, G. Oh, and E.K. Kim, K.S. Lee, G. Oh, and E.K. Kim, J. Korean Phys. Soc., 2016, 69, p 416.

    Article  CAS  Google Scholar 

  22. Y.K. Ezhovskii, and D.V. Pavlov, Y.K. Ezhovskii, and D.V. Pavlov, Inorg. Mater., 2007, 43, p 692.

    Article  CAS  Google Scholar 

  23. E. Zielony, E. Płaczek-Popko, P. Nowakowski, Z. Gumienny, A. Suchocki, and G. Karczewski, E. Zielony, E. Płaczek-Popko, P. Nowakowski, Z. Gumienny, A. Suchocki, and G. Karczewski, Mater. Chem. Phys., 2012, 134, p 821.

    Article  CAS  Google Scholar 

  24. J. Avila-Avendano, I. Mejia, H.N. Alshareef, Z. Guo, C. Young, and M. Quevedo-Lopez, J. Avila-Avendano, I. Mejia, H.N. Alshareef, Z. Guo, C. Young, and M. Quevedo-Lopez, Thin Solid Films, 2016, 608, p 1.

    Article  CAS  Google Scholar 

  25. A.A. Al-mebir, P. Harrison, A. Kadhim, G. Zeng, and J. Wu, A.A. Al-mebir, P. Harrison, A. Kadhim, G. Zeng, and J. Wu, Adv. Condens. Matter Phys., 2016, 2016, p 1.

    Article  Google Scholar 

  26. A. Kumar, A. Sanger, A. Kumar, and R. Chandra, A. Kumar, A. Sanger, A. Kumar, and R. Chandra, RSC Adv., 2016, 6, p 47178.

    Article  CAS  Google Scholar 

  27. C. Nicolaou, A. Zacharia, A. Delimitis, G. Itskos, and J. Giapintzakis, C. Nicolaou, A. Zacharia, A. Delimitis, G. Itskos, and J. Giapintzakis, Appl. Surf. Sci., 2020, 511, p 145547.

    Article  CAS  Google Scholar 

  28. F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia, A.L. Leal-Cruz, M.I. Pintor-Monroy, and M. Quevedo-López, F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia, A.L. Leal-Cruz, M.I. Pintor-Monroy, and M. Quevedo-López, J. Mater. Sci. Mater. Electron., 2018, 29, p 20623.

    Article  CAS  Google Scholar 

  29. D.-J. Kim, J.-W. Kim, E.J. Kim, and K.-K. Koo, D.-J. Kim, J.-W. Kim, E.J. Kim, and K.-K. Koo, Korean J. Chem. Eng., 2011, 28, p 1120.

    Article  CAS  Google Scholar 

  30. W. Mahmood, J. Ali, I. Zahid, A. Thomas, and A. ul Haq, W. Mahmood, J. Ali, I. Zahid, A. Thomas, and A. ul Haq, Optik (Stuttg), 2018, 158, p 1558.

    Article  CAS  Google Scholar 

  31. M.G. Syed Basheer Ahamed, V.S. Nagarethinam, A. Thayumanavan, K.R. Murali, C. Sanjeeviraja, and M. Jayachandran, M.G. Syed Basheer Ahamed, V.S. Nagarethinam, A. Thayumanavan, K.R. Murali, C. Sanjeeviraja, and M. Jayachandran, J. Mater. Sci. Mater. Electron, 2010, 21, p 1229.

    Article  CAS  Google Scholar 

  32. G.K. Reeves, G.K. Reeves, Solid State Electron., 1980, 23, p 487.

    Article  CAS  Google Scholar 

  33. H. Uda, H. Matsumoto, K. Kuribayashi, Y. Komatsu, A. Nakano, and S. Ikegami, H. Uda, H. Matsumoto, K. Kuribayashi, Y. Komatsu, A. Nakano, and S. Ikegami, Jpn. J. Appl. Phys., 1983, 22, p 1832.

    Article  CAS  Google Scholar 

  34. A.J. Scholten, G.D.J. Smit, M. Durand, R. Van Langevelde, and D.B.M. Klaassen, A.J. Scholten, G.D.J. Smit, M. Durand, R. Van Langevelde, and D.B.M. Klaassen, IEEE Trans. Electron Devices, 2006, 53, p 2098.

    Article  Google Scholar 

  35. V. Kabra, L. Aamir, and M.M. Malik, V. Kabra, L. Aamir, and M.M. Malik, Beilstein J. Nanotechnol., 2014, 5, p 2216.

    Article  Google Scholar 

  36. M. Soylu, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, and F. Yakuphanoglu, M. Soylu, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, and F. Yakuphanoglu, Phys. E Low-Dimens. Syst. Nanostruct., 2014, 64, p 240.

    Article  CAS  Google Scholar 

  37. M. Soylu, A.A. Al-Ghamdi, and F. Yakuphanoglu, M. Soylu, A.A. Al-Ghamdi, and F. Yakuphanoglu, Microelectron. Eng., 2012, 99, p 50.

    Article  CAS  Google Scholar 

  38. B. Ray, A.G. Baradwaj, B.W. Boudouris, and M.A. Alam, B. Ray, A.G. Baradwaj, B.W. Boudouris, and M.A. Alam, J. Phys. Chem. C, 2014, 118, p 17461.

    Article  CAS  Google Scholar 

  39. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, J. Appl. Phys., 2012, 112, p 064506.

    Article  Google Scholar 

Download references

Acknowledgments

F.J.O.-E. is grateful to the RD Research & Technology S.A. de C.V. enterprise for financial assistance. The authors also wish to thank the Department of Materials Science and Engineering of UT Dallas for constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Ochoa-Estrella.

Ethics declarations

Conflict of interest

In the present work, on behalf of all the authors, I declare that there is no conflict of interest regarding the present research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Estrella, F.J., Vera-Marquina, A., Leal-Cruz, A.L. et al. In Situ Fabrication of CdS/ZnTe Heterojunction Diodes by Pulsed Laser Deposition. J. Electron. Mater. 50, 2305–2312 (2021). https://doi.org/10.1007/s11664-021-08734-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08734-w

Keywords

Navigation