Skip to main content

Advertisement

Log in

Synthesis, electrical transport mechanisms and photovoltaic characteristics of p-ZnIn2Se4/n-CdTe thin film heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis and electrical transport features of vacuum-deposited p-ZnIn2Se4/n-CdTe (p-ZIS/n-CT) heterojunction diode (HJD) are discussed. Transmission electron microscopy (TEM) was used to characterize the microstructures of p-ZIS and n-CT thin films. The Hall measurement system determined the conductivity and carrier concentration of the ZIS and CT films; the acceptor concentration (Na) for ZIS film and donor concentration (\(N_{\rm d}\)) for CT film observed are \(4.12\times {10}^{13}\,\text{cm}^{-3}\) and \(2.80\times {10}^{14}\,\text{cm}^{-3}\), respectively. The DC electrical resistance (\(R\)) variation with temperature (T) determines thermal activation (impurity-based conduction) and bandgap energies of p-ZIS and \({n}\text{-CT}\) thin films. Scanning electron microscopy (SEM) was used to look at the surface morphology of \(p\text{-ZIS}/n{\text{-CT HJD}}\). The semiconductor characterization system (SCS-4200) was used to characterize the current–voltage (\(I{-}V\)) and capacitance–voltage (CV) of the \(p\text{-ZIS}/n\text{-CT HJD}\) at different \(T\) (\(303{-}340\,\text{K}\)). The \(p\text{-ZIS}/n\text{-CT HJD}\)’s dark \(I{-}V\) finding shows conventional diode nature with a decent rectification ratio (RR) (\(\simeq\, 4.34\times {10}^{5}\;\text{at}\;\pm 2.0\,\text{V}\)). At a given bias, the RR value drops as \(T\) increases. The systematic assessment of \(I{-}V\) data suggests the thermionic emission (TE) mechanism at lower bias and the space charge-limited conduction (SCLC) mechanism at higher bias. The quantitative analysis estimates the barrier height (\({\varphi }_{\rm b}\)) as \(\simeq\, 0.79\,\text{eV}\) (from \(I{-}V\) measurements) and \(\simeq\, 0.88\,\text{eV}\) (from CV measurements). Cheung’s function was utilized to derive the \({\varphi}_{\rm b}\), ideality factor (\(n\)) and the series resistance (\(R_{\rm s}\)) of the p-ZIS/n-CT HJD. With a rise in \(T\), HJD’s saturation current (\(I_{\rm s}\)), \(n\) and \({\varphi }_{\rm b}\) rise, whilst, \(R_{\rm s}\) falls. To gain insight into depletion behaviour, a study examined space charge and electric field distributions for abrupt p-ZIS/n-CT HJD. The experimental findings of Anderson’s model corroborate a theoretical energy band diagram for the p-ZIS/n-CT HJD. The p-ZIS/n-CT HJD’s photovoltaic (PV) characterization resulted in a 0.51 fill factor and 1.04% efficiency. The implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

References

  1. M. Rudan, Physics of Semiconductor Devices, 1st edn. (Springer, New York, NY, 2015), pp. 485–538

    Google Scholar 

  2. B.R. Pamplin, in CRC Handbook of Chemistry and Physics, ed. By R.C. Weast (CRC Press, Boca Raton, 1981), p. E-81

  3. J. Filipowicz, N. Romeo, L. Tarricone, Solid State Commun. 38, 619 (1981)

    Article  CAS  Google Scholar 

  4. S.P. Yadav, P.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Sol. Energy Mater. Sol. Cells 92, 453 (2008)

    Article  CAS  Google Scholar 

  5. S. Shionoya, Y. Tamqto, J. Phys. Soc. Jpn. 19, 1142 (1964)

    Article  CAS  Google Scholar 

  6. S. Chander, M.S. Dhaka, Mater. Sci. Semicond. Process. 40, 708 (2015)

    Article  CAS  Google Scholar 

  7. F.J. García, M.S. Tomar, Thin Solid Films 69, 137 (1980)

    Article  Google Scholar 

  8. H.M. Zeyada, M.S. Aziz, A.S. Behairy, Physica B 404, 3957 (2009)

    Article  CAS  Google Scholar 

  9. A.A. Attia, H.A.M. Ali, G.F. Salem, M.I. Ismail, F.F. Al-Harbi, Opt. Mater. (Amst.) 66, 480 (2017)

    Article  CAS  Google Scholar 

  10. S.P. Yadav, P.S. Shinde, K.Y. Rajpure, C.H. Bhosale, J. Phys. Chem. Solids 69, 1747 (2008)

    Article  CAS  Google Scholar 

  11. K.W. Cheng, Y.H. Cheng, M.S. Fan, Int. J. Hydrogen Energy 37, 13763 (2012)

    Article  CAS  Google Scholar 

  12. D.K. Dhruv, B.H. Patel, Int. J. Appl. Sci. Eng. Res. 3, 121 (2014)

    Google Scholar 

  13. D.K. Dhruv, B.H. Patel, Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 3, 9 (2015)

    Google Scholar 

  14. D.K. Dhruv, A. Nowicki, B.H. Patel, V.D. Dhamecha, Surf. Eng. 31, 556 (2015)

    Article  CAS  Google Scholar 

  15. D.K. Dhruv, B.H. Patel, Mater. Sci. Semicond. Process. 54, 29 (2016)

    Article  CAS  Google Scholar 

  16. D.K. Dhruv, B.H. Patel, D. Lakshminarayana, Mater. Res. Innovations 20, 285 (2016)

    Article  CAS  Google Scholar 

  17. D.K. Dhruv, S.D. Dhruv, N. Agrawal, P.B. Patel, Mater. Today Proc. 55, 67 (2022)

    Article  CAS  Google Scholar 

  18. K.N. Shreekanthan, K.V. Bangera, G.K. Shivakumar, M.G. Mahesha, Indian J. Pure Appl. Phys. 44, 705 (2006)

    CAS  Google Scholar 

  19. S.S. Li, Semiconductor Physical Electronics, 1st edn. (Springer, New York, 1993), pp. 287–326

    Book  Google Scholar 

  20. S. Acharya, K.V. Bangera, G.K. Shivakumar, Appl. Nanosci. (Switzerland) 5, 1003 (2015)

    Article  CAS  Google Scholar 

  21. C. Lamberti, G. Agostini, Characterization of Semiconductor Heterostructures and Nanostructures (Elsevier, New York, 2013)

    Google Scholar 

  22. A. Patel, P. Pataniya, G.K. Solanki, C.K. Sumesh, K.D. Patel, V.M. Pathak, Superlattices Microstruct. 130, 160 (2019)

    Article  CAS  Google Scholar 

  23. H. Patel, K. Patel, A. Patel, H. Jagani, K.D. Patel, G.K. Solanki, V.M. Pathak, J. Electron. Mater. 50, 5217 (2021)

    Article  CAS  Google Scholar 

  24. K.M. Al-Shibani, Physica B 322, 390 (2002)

    Article  CAS  Google Scholar 

  25. W. Setyawan, R.M. Gaume, S. Lam, R.S. Feigelson, S. Curtarolo, ACS Comb. Sci. 13, 382 (2011)

    Article  CAS  Google Scholar 

  26. M.M. El-Nahass, A.A. Attia, H.A.M. Ali, G.F. Salem, M.I. Ismail, Chaos Solitons Fractals 95, 52 (2017)

    Article  Google Scholar 

  27. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  28. C.R. Crowell, S.M. Sze, Solid State Electron. 9, 1035 (1966)

    Article  CAS  Google Scholar 

  29. R.R. Desai, D. Lakshminarayana, R. Sachdeva, P.B. Patel, C.J. Panchal, M.S. Desai, N. Padha, J. Nano Electron. Phys. 3, 995 (2011)

    Google Scholar 

  30. M. Nasr, A.M. Mansour, I.M. El Radaf, Mater. Res. Expr. 6, 036405 (2019)

    Article  Google Scholar 

  31. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2006), pp. 77–133

    Google Scholar 

  32. A. Türüt, Turk. J. Phys. 44, 302 (2021)

    Article  Google Scholar 

  33. F. Yakuphanoglu, Physica B 388, 226 (2007)

    Article  CAS  Google Scholar 

  34. R.D. Jones, Hybrid Circuit Design and Manufacture, 1st edn. (CRC Press, Boca Raton, 2020), pp. 62–71

    Book  Google Scholar 

  35. Ç. Bilkan, Ş Altındal, J. Alloys Compd. 708, 464 (2017)

    Article  CAS  Google Scholar 

  36. M. Sugiyama, T. Shimizu, D. Kawade, K. Ramya, K.T. Ramakrishna-Reddy, J. Appl. Phys. 115, 083508 (2014)

    Article  Google Scholar 

  37. G. di Liberto, G. Pacchioni, J. Phys. Condens. Matter 33, 415002 (2021)

    Article  CAS  Google Scholar 

  38. K.M. Gupta, N. Gupta, Advanced Semiconducting Materials and Devices, 1st edn. (Springer, Cham, 2016), pp. 87–144

    Book  Google Scholar 

  39. K.M. Zaidan, H.F. Hussein, R.A. Talib, A.K. Hassan, Energy Procedia 6, 85 (2011)

    Article  CAS  Google Scholar 

  40. G.M. Masters, Renewable and Efficient Electric Power Systems, 2nd edn. (Wiley-IEEE Press, Hoboken, 2004), pp. 253–315

    Book  Google Scholar 

Download references

Acknowledgements

One of the authors, S.D. Dhruv is thankful to SHODH-ScHeme of Developing High-Quality Research-MYSY (202010820029) for a scholarship.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DKD, BHP, NA, RB, SDD, PBP and VP. The first draft of the manuscript was written by DKD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Naveen Agrawal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhruv, D.K., Patel, B.H., Agrawal, N. et al. Synthesis, electrical transport mechanisms and photovoltaic characteristics of p-ZnIn2Se4/n-CdTe thin film heterojunction. J Mater Sci: Mater Electron 33, 24003–24015 (2022). https://doi.org/10.1007/s10854-022-08755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08755-z

Navigation