Skip to main content
Log in

Paracetamol-Assisted Self-Assembled ZnO Porous Microstructures for Enhanced CO2 Detection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Paracetamol-assisted zinc oxide (ZnO) highly porous micro-flakes were synthesized by a rapid two-step synthesis: precipitation (with sodium hydroxide) and calcination (at 250°C for 1 h). Addition of paracetamol during the synthesis not only inhibited the growth of ZnO grains but also originated self-assembly of the micro-flakes resulting in highly porous flower like structures. Increase in paracetamol concentration also increased porosity on ZnO microstructures due to the self-assembly of thinner flakes without any structural changes. X-ray diffraction (XRD) shows the preferential orientation of powders in the (101) direction of hexagonal structure. Raman spectra is dominated by E2 (high) optical mode due to vibration of oxygen atoms. Samples were tested for gas detection at 50, 100, 200, 400, 800 and 1000 (parts per million) PPM concentration of carbon dioxide (CO2). ZnO porous microstructures were obtained with a high concentration of paracetamol, enhancing the carbon dioxide sensing response from 20% to 90% with a response time of 60 s. These simple, low-cost and highly porous self-assembled ZnO structures with enhanced CO2 detection will be of interest for several researchers in the chemical sensor fabrication field.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Dhahri, S.G. Leonardi, M. Hjiri, L. El Mir, A. Bonavita, N. Donato, D. Iannazzo, and G. Neri, Sens. Actuators B Chem. 239, 36 (2017).

    Article  CAS  Google Scholar 

  2. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sens. Actuators B Chem. 160, 580 (2011).

    Article  CAS  Google Scholar 

  3. H. Çolak and E. Karaköse, Sens. Actuators B Chem. 296, 126629 (2019).

    Article  CAS  Google Scholar 

  4. K.C. Hsu, T.H. Fang, Y.J. Hsiao, and C.A. Chan, Mater. Lett. 261, 127144 (2020).

    Article  CAS  Google Scholar 

  5. T.V.K. Karthik, A.G. Hernández, Y. Kudriavtsev, H. Gómez-Pozos, M.G. Ramírez-Cruz, L. Martínez-Ayala, and A. Escobosa-Echvarria, J. Mater. Sci.: Mater. Electron. 31, 7470 (2020).

    CAS  Google Scholar 

  6. J. Song and S. Lim, J. Phys. Chem. C 111, 596 (2007).

    Article  CAS  Google Scholar 

  7. W. Khan, F. Khan, H.M.S. Ajmal, N.U. Huda, J.H. Kim, and S.D. Kim, Nanomaterials 8, 1 (2018).

    Google Scholar 

  8. G.C. Yi, C. Wang, and W. Il Park, Semicond. Sci. Technol. 20, 21 (2005).

    Article  CAS  Google Scholar 

  9. J.Z. Marinho, F.C. Romeiro, S.C.S. Lemos, F.V. Motta, C.S. Riccardi, M.S. Li, E. Longo, and R.C. Lima, J. Nanomater. 2012, 427172 (2012).

    Article  CAS  Google Scholar 

  10. M. Poornajar, P. Marashi, D. Haghshenas Fatmehsari, and M. Kolahdouz Esfahani, Ceram. Int. 42, 173 (2016).

    Article  CAS  Google Scholar 

  11. A. Umar, A.A. Ibrahim, R. Kumar, T. Almas, M.S. Al-Assiri, and S. Baskoutas, Ceram. Int. 45, 13825 (2019).

    Article  CAS  Google Scholar 

  12. A.A. Ibrahim, P. Tiwari, M.S. Al-Assiri, A.E. Al-Salami, A. Umar, R. Kumar, S.H. Kim, Z.A. Ansari, and S. Baskoutas, Materials (Basel) 10, 795 (2017).

    Article  CAS  Google Scholar 

  13. A.I. Ahmed, U. Ahmad, and S. Baskoutas, J. Nanosci. Nanotechnol. 17, 9157 (2017).

    Article  CAS  Google Scholar 

  14. A.A. Ibrahim, R. Kumar, A. Umar, S.H. Kim, A. Bumajdad, Z.A. Ansari, and S. Baskoutas, Electrochim. Acta 222, 463 (2016).

    Article  CAS  Google Scholar 

  15. A. Umar, T. Almas, A.A. Ibrahim, R. Kumar, M.S. AlAssiri, S. Baskoutas, and M.S. Akhtar, J. Electroanal. Chem. 864, 1 (2020).

    Article  CAS  Google Scholar 

  16. X.P. Chen, C.K.Y. Wong, C.A. Yuan, and G.Q. Zhang, Procedia Eng. 25, 379 (2011).

    Article  CAS  Google Scholar 

  17. A.A. Yadav, A.C. Lokhande, J.H. Kim, and C.D. Lokhande, J. Ind. Eng. Chem. 49, 76 (2017).

    Article  CAS  Google Scholar 

  18. N.B. Tanvir, O. Yurchenko, E. Laubender, R. Pohle, O.V. Sicard, and G. Urban, Sens. Actuators B Chem. 257, 1027 (2018).

    Article  CAS  Google Scholar 

  19. A. Khayatian, M.A. Kashi, R. Azimirad, and S. Safa, J. Phys. D Appl. Phys. 47, 075003 (2014).

    Article  CAS  Google Scholar 

  20. M. Cantarella, A. Di Mauro, A. Gulino, L. Spitaleri, G. Nicotra, V. Privitera, and G. Impellizzeri, Appl. Catal. B Environ. 238, 509 (2018).

    Article  CAS  Google Scholar 

  21. S.O. Adejo, S.G. Yiase, P.O. Ukoha, B.T. Iorhuna, and J.A. Gbertyo, Sch. Res. Libr. Arch. Appl. Sci. Res. 6, 58 (2014).

    CAS  Google Scholar 

  22. M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, and R.K. Kotnala, J. Alloys Compd. 493, 553 (2010).

    Article  CAS  Google Scholar 

  23. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).

    Article  CAS  Google Scholar 

  24. S. Guo, Z. Du, and S. Dai, Phys. Status Solidi Basic Res. 246, 2329 (2009).

    Article  CAS  Google Scholar 

  25. M. Schumm, M. Koerdel, S. Müller, C. Ronning, E. Dynowska, Z. Gołacki, W. Szuszkiewicz, and J. Geurts, J. Appl. Phys. 105, 083525 (2009).

    Article  CAS  Google Scholar 

  26. H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, and K. Nishida, J. Ceram. Soc. Jpn. 125, 445 (2017).

    Article  CAS  Google Scholar 

  27. T. Ngo-Duc, K. Singh, M. Meyyappan, and M.M. Oye, Nanotechnology 23, 194015 (2012).

    Article  CAS  Google Scholar 

  28. Y. Song, S. Zhang, C. Zhang, Y. Yang, and K. Lv, Crystals 9, 395 (2019).

    Article  CAS  Google Scholar 

  29. A.H.N. Melo and M.A. Macêdo, PLoS ONE 11, 1 (2016).

    Google Scholar 

  30. N.L. Marana, V.M. Longo, E. Longo, J.B.L. Martins, and J.R. Sambrano, J. Phys. Chem. A 112, 8958 (2008).

    Article  CAS  Google Scholar 

  31. S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan, and Y. Hayakawa, Dalton Trans. 44, 10490 (2015).

    Article  CAS  Google Scholar 

  32. Y. Miao, H. Zhang, S. Yuan, Z. Jiao, and X. Zhu, J. Colloid Interface Sci. 462, 9 (2016).

    Article  CAS  Google Scholar 

  33. H. Liu, J. Meng, and J. Zhang, Catal. Sci. Technol. 7, 3802 (2017).

    Article  CAS  Google Scholar 

  34. H. Zhou, H. Zhang, Y. Wang, Y. Miao, L. Gu, and Z. Jiao, J. Colloid Interface Sci. 448, 367 (2015).

    Article  CAS  Google Scholar 

  35. D. Wang, S. Du, X. Zhou, B. Wang, J. Ma, P. Sun, Y. Sun, and G. Lu, CrystEngComm 15, 7438 (2013).

    Article  CAS  Google Scholar 

  36. J. Wang, S. Hou, L. Zhang, J. Chen, and L. Xiang, CrystEngComm 16, 7115 (2014).

    Article  CAS  Google Scholar 

  37. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004).

    Article  CAS  Google Scholar 

  38. R. Dhahri, M. Hjiri, L. El Mir, E. Fazio, F. Neri, F. Barreca, and N. Donato, J. Phys. D Appl. Phys. 48, 255503 (2015).

    Article  CAS  Google Scholar 

  39. M. Shaban, S. Ali, and M. Rabia, J. Mater. Res. Technol. 8, 4510 (2019).

    Article  CAS  Google Scholar 

  40. P.M. Shirage, K. Rana, Y. Kumar, and S. Sen, RSC Adv. 6, 82733 (2016).

    Article  CAS  Google Scholar 

  41. D.H. Kim, J.Y. Yoon, H.C. Park, and K.H. Kim, Sens. Actuators B Chem. 62, 61 (2000).

    Article  CAS  Google Scholar 

  42. Z. Yin, G.T.R. Palmore, and S. Sun, Trends Chem. 1, 739 (2019).

    Article  CAS  Google Scholar 

  43. A.G. Hernandez, Y. Kudriavtsev, T.V.K. Karthik, and R. Asomoza, J. Mater. Sci.: Mater. Electron. 30, 6660 (2019).

    CAS  Google Scholar 

  44. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, and A. Li Bassi, J. Appl. Phys. 115, 073508 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Tavira-Fuentes and J. Roque de la Puente for their assistance in XRD and SEM measurements. This work was supported by PRODEP with Project No. PRODEP-2018-[2019]-0135/PRODEP-2018-[2020]-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. K. Karthik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, A.G., Olvera, M., Pérez-Cortes, O. et al. Paracetamol-Assisted Self-Assembled ZnO Porous Microstructures for Enhanced CO2 Detection. J. Electron. Mater. 50, 2057–2065 (2021). https://doi.org/10.1007/s11664-020-08732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08732-4

Keywords

Navigation