Skip to main content
Log in

Effects of RF Magnetron Sputtering Deposition Power on Crystallinity and Thermoelectric Properties of Antimony Telluride and Bismuth Telluride Thin Films on Flexible Substrates

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric materials carry significant promise for self-powering future generations of unattended microdevices and wearable devices. The current increased interest in such devices highlights the need for research to provide understanding of the basic material properties of thermoelectric materials, specifically in thin-film form, deposited on flexible polymer substrates. In this study, the surface topography, crystalline structure, and electrical properties of sputtered thin films of two of the most common thermoelectric materials, i.e., antimony telluride (Sb2Te3) and bismuth telluride (Bi2Te3), supported on silicon and polymer substrates were investigated. The study focuses on determining the effect of the sputtering power and underlying substrate on the crystal structure formation as well as grain size of the resulting thin film. Radiofrequency (RF) magnetron sputtering with power levels from 50 W to 200 W was used to deposit these layers on several test structures. The results demonstrate that increasing the RF sputtering power resulted in (i) an increase in the crystalline size (from 0.48 nm to 29.66 nm for Sb2Te3 and from 10.60 nm to 20.29 nm for Bi2Te3), (ii) a significant increase in the content of tellurium (Te) in the Sb2Te3 and Bi2Te3 thin films, (iii) an order-of-magnitude increase in the electrical conductivity of the Bi2Te3 thin film fabricated on silicon wafer, and (iv) a 150% increase in the Seebeck coefficient for both Bi2Te3 and Sb2Te3 samples. Furthermore, surface roughness analysis showed that deposition on polyimide substrate modestly increased the surface roughness (Ra), from 6.59 nm to 9.91 nm for Bi2Te3 and from 12.46 nm to 15.41 nm for Sb2Te3. The electrical resistivity of Bi2Te3 thin films on polyimide was found to be 2.72 × 10−3 Ω m, compared with 1.58 × 10−3 Ω m on silicon substrate, while for Sb2Te3,, the electrical resistivity on polyimide substrate increased to 580 × 10−3 Ω m as compared with 145 × 10−3 Ω m on silicon substrate. Taken together, the results of this work demonstrate that the use of high deposition power during RF sputtering of Sb2Te3 and Bi2Te3 thin films results in significant improvements in their crystallinity, conductivity, and Seebeck coefficient, which are key material properties of great importance for thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  2. D. Champier, Energy Convers. Manag. 140, 167 (2017).

    Article  Google Scholar 

  3. S.B. Riffat, and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  4. C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, and B.J. Cho, ACS Energy Lett. 3, 501 (2018).

    Article  CAS  Google Scholar 

  5. Y. Lee, D. Blaauw, and D. Sylvester, Proc. IEEE 104, 1529 (2016).

    Article  Google Scholar 

  6. Y. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, IEEE J. Solid-State Circuits 47, 335 (2012).

    Article  Google Scholar 

  7. D.P. Rose, M.E. Ratterman, D.K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, and J.C. Heikenfeld, IEEE Trans. Biomed. Eng. 62, 1457 (2014).

    Article  Google Scholar 

  8. D.M. Rowe, Renew. Energy 16, 1251 (1999).

    Article  Google Scholar 

  9. K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017).

    Article  Google Scholar 

  10. J.-H. Kim, J.-Y. Choi, J.-M. Bae, M.-Y. Kim, and T.-S. Oh, Mater. Trans. 54, 618 (2013).

    Article  CAS  Google Scholar 

  11. F. Yang, S. Zheng, H. Wang, W. Chu, and Y. Dong, J. Micromech. Microeng. 27, 055005 (2017).

    Article  Google Scholar 

  12. A. Al-Bayaz, A. Giani, M. Artaud, A. Foucaran, F. Pascal-Delannoy, and A. Boyer, J. Cryst. Growth 241, 463 (2002).

    Article  CAS  Google Scholar 

  13. C. W. Lee, G. H. Kim, J. W. Choi, K. S. An, J. S. Kim, H. Kim, and Y. K. Lee, Physica Status Solidi (RRL)–Rapid Res. Lett. 11, 1700029 (2017).

  14. S. Golia, M. Arora, R. Sharma, and A. Rastogi, Curr. Appl. Phys. 3, 195 (2003).

    Article  Google Scholar 

  15. P. Fourmont, L.F. Gerlein, F.-X. Fortier, S.G. Cloutier, and R. Nechache, ACS Appl. Mater. Interfaces 10, 10194 (2018).

    Article  CAS  Google Scholar 

  16. Z. Cao, M.J. Tudor, R.N. Torah, and S.P. Beeby, IEEE Trans. Electron Devices 63, 4024 (2016).

    Article  CAS  Google Scholar 

  17. H. Huang, W.-L. Luan, and S.-T. Tu, Thin Solid Films 517, 3731 (2009).

    Article  CAS  Google Scholar 

  18. P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 6444 (2017).

    Article  CAS  Google Scholar 

  19. S. Shen, W. Zhu, Y. Deng, H. Zhao, Y. Peng, and C. Wang, Appl. Surf. Sci. 414, 197 (2017).

    Article  CAS  Google Scholar 

  20. D.-H. Kim, E. Byon, G.-H. Lee, and S. Cho, Thin Solid Films 510, 148 (2006).

    Article  CAS  Google Scholar 

  21. D.-H. Kim and G.-H. Lee, Mater. Sci. Eng. B 131, 106 (2006).

    Article  CAS  Google Scholar 

  22. S. Nimbalkar, E. Castagnola, A. Balasubramani, A. Scarpellini, S. Samejima, A. Khorasani, A. Boissenin, S. Thongpang, C. Moritz, and S. Kassegne, Sci. Rep. 8, 6958 (2018).

    Article  Google Scholar 

  23. S.W. Shaner, J.K. Allen, M. Felderman, E.T. Pasko, C.D. Wimer, N.D. Cosford, S. Kassegne, and P. Teriete, AIP Adv. 9, 065313 (2019).

    Article  Google Scholar 

  24. V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li Bassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008).

    Article  CAS  Google Scholar 

  25. B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem. 3, 207 (2010).

    Article  CAS  Google Scholar 

  26. N. Hatsuta, D. Takemori, and M. Takashiri, J. Alloys Compd. 685, 147 (2016).

    Article  CAS  Google Scholar 

  27. J.-M. Lin, Y.-C. Chen, and W. Chen, J. Nanomater. 16, 225 (2015).

    Google Scholar 

  28. J.-M. Lin, Y.-C. Chen, and C.-P. Lin, J. Nanomater. 2013, 1 (2013).

    Google Scholar 

  29. E.M.F. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, and L.M. Goncalves, J. Alloys Compd. 774, 1102 (2019).

    Article  CAS  Google Scholar 

  30. M. Goto, M. Sasaki, Y. Xu, T. Zhan, Y. Isoda, and Y. Shinohara, Appl. Surf. Sci. 407, 405 (2017).

    Article  CAS  Google Scholar 

  31. Y.-J. Wu, S.-C. Hsu, Y.-C. Lin, Y. Xu, T.-H. Chuang, and S.-C. Chen, Surf. Coat. Technol., 125694 (2020).

  32. S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999).

    Article  CAS  Google Scholar 

  33. Z.-K. Cai, P. Fan, Z.-H. Zheng, P.-J. Liu, T.-B. Chen, X.-M. Cai, J.-T. Luo, G.-X. Liang, and D.-P. Zhang, Appl. Surf. Sci. 280, 225 (2013).

    Article  CAS  Google Scholar 

  34. S.R. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blazquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, and P. Singh, IEEE J. Solid-State Circuits 46, 721 (2011).

    Article  Google Scholar 

  35. S. Jo, M. Kim, M. Kim, and Y.-J. Kim, Electron. Lett. 48, 1015 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based on research work supported by the Center for Neurotechnology (CNT), a National Science Foundation Engineering Research Center (EEC-1028725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Kassegne.

Ethics declarations

Conflict of Interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material:

Supplementary file 1 (PDF 1947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirghasemi, F., Kassegne, S. Effects of RF Magnetron Sputtering Deposition Power on Crystallinity and Thermoelectric Properties of Antimony Telluride and Bismuth Telluride Thin Films on Flexible Substrates. J. Electron. Mater. 50, 2190–2198 (2021). https://doi.org/10.1007/s11664-020-08681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08681-y

Keywords

Navigation