Skip to main content
Log in

[Bi]:[Te] Control, Structural and Thermoelectric Properties of Flexible Bi x Te y Thin Films Prepared by RF Magnetron Sputtering at Different Sputtering Pressures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, flexible Bi x Te y thin films were prepared by radio frequency (RF) magnetron sputtering using a Bi2Te3 target on polyimide substrate. The effects of sputtering pressures, which ranged between 0.6 Pa and 1.6 Pa on the [Bi]:[Te] ratio, and structural and thermoelectric properties were investigated. The [Bi]:[Te] ratio of thin film was determined by energy-dispersive spectrometry (EDS). The EDS spectra show the variation of the [Bi]:[Te] ratio as the sputtering pressure is varied. The film deposited at 1.4 Pa almost has a stoichiometric composition. The selective films with different [Bi]:[Te] ratios and sputtering pressures were characterized by their surface morphologies, crystal and chemical structures by field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) and Raman spectroscopy, respectively. Electrical transport properties, including carrier concentration and mobility, were measured by Hall effect measurements. Seebeck coefficients and electrical conductivities were simultaneously measured by a direct current four-terminal method (ZEM-3). The XRD and Raman spectroscopy results show a difference in microstructure between BiTe and Bi2Te3 depending on the [Bi]:[Te] ratio. Electrical conductivity and Seebeck coefficient are related to the crystal and chemical structures. The maximum power factor of the Bi2Te3 thin film is 9.5 × 10−4 W/K2 m at room temperature, and it increases to 12.0 × 10−4 W/K2 m at 195°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Deng, H.-M. Liang, Y. Wang, Z.-W. Zhang, M. Tan, and J.-L. Cui, J. Alloys Compd. 509, 5683 (2011).

    Article  Google Scholar 

  2. C. Zhao-kun, F. Ping, Z. Zhuang-hao, L. Peng-juan, C. Tian-bao, C. Xing-min, L. Jing-ting, L. Guang-xing, and Z. Dong-ping, Appl. Surf. Sci. 280, 225 (2013).

    Article  Google Scholar 

  3. L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).

    Article  Google Scholar 

  4. L.M. Goncalves, P. Alpuim, G. Min, D.M. Rowe, C. Couto, and J.H. Correia, J. Vac. 82, 1499 (2008).

    Article  Google Scholar 

  5. A. LiBassi, A. Bailini, C.S. Casari, F. Donati, A. Mantegazza, M. Passoni, V. Russo, and C.E. Bottani, J. Appl. Phys. 105, 124307 (2009).

    Article  Google Scholar 

  6. H.J. Lee, S. Hyun, H.S. Park, and S.W. Han, Microelectron. Eng. 88, 593 (2011).

    Article  Google Scholar 

  7. X. Wang, H. He, N. Wang, and L. Miao, Appl. Surf. Sci. 276, 539 (2013).

    Article  Google Scholar 

  8. Z.H. Zheng, P. Fan, T.B. Chen, Z.K. Cai, P.J. Liu, G.X. Liang, D.P. Zhang, and X.M. Cai, Thin Solid Films 520, 5245 (2012).

    Article  Google Scholar 

  9. P. Nuthongkum, A. Sakulkalavek, and R. Sakdanuphab, J. Electron. Mater. 46, 2900 (2017).

    Article  Google Scholar 

  10. Y. Sun, E. Zhang, S. Johnsen, M. Sillassen, P. Sun, F. Steglich, J. Bøttiger, and B.B. Iversen, Thin Solid Films 519, 5397 (2011).

    Article  Google Scholar 

  11. H. Feng-Hao, W. Na-Fu, T. Yu-Zen, C. Ming-Chieh, C. Yu-Song, and H. Mau-Phon, Appl. Surf. Sci. 280, 104 (2013).

    Article  Google Scholar 

  12. R. Sathyamoorthy and J. Dheepa, J. Phys. Chem. Solids 68, 111 (2007).

    Article  Google Scholar 

  13. T. Khumtong, P. Sukwisute, A. Sakulkalavek, and R. Sakdanuphab, J. Electron. Mater. 46, 3166 (2017).

    Article  Google Scholar 

  14. V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. LiBassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008).

    Article  Google Scholar 

  15. A. Sakulkalavek and R. Sakdanuphab, Mat. Sci. Semicon. Proc. 56, 313 (2016).

    Article  Google Scholar 

  16. M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).

    Article  Google Scholar 

  17. O. Caha, A. Dubroka, J. Humlíček, V. Holý, H. Steiner, M. Ul-Hassan, J. Sánchez-Barriga, O. Rader, T.N. Stanislavchuk, A.A. Sirenko, G. Bauer, and G. Springholz, Cryst. Growth Des. 13, 3365 (2013).

    Article  Google Scholar 

  18. H. Yue, A. Wu, Y. Feng, X. Zhang, and T. Li, Thin Solid Films 519, 5577 (2011).

    Article  Google Scholar 

  19. S. Wang, G. Tan, W. Xie, G. Zheng, H. Li, J. Yang, and X. Tang, J. Mater. Chem. 22, 20943 (2012).

    Article  Google Scholar 

  20. Z. Zeng, P. Yang, and Z. Hu, Appl. Surf. Sci. 268, 472 (2013).

    Article  Google Scholar 

  21. J.R. Watling and D.J. Paul, J. Appl. Phys. 110, 114508 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilaipon Nuthongkum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuthongkum, P., Sakdanuphab, R., Horprathum, . et al. [Bi]:[Te] Control, Structural and Thermoelectric Properties of Flexible Bi x Te y Thin Films Prepared by RF Magnetron Sputtering at Different Sputtering Pressures. J. Electron. Mater. 46, 6444–6450 (2017). https://doi.org/10.1007/s11664-017-5671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5671-x

Keywords

Navigation