Skip to main content

Advertisement

Log in

Exploring the Optical, Structural and Electronic Properties of a Two-Dimensional GaSe/C2N van der Waals Heterostructure As a Photovoltaic Cell: A Computational Investigation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The design of van der Waals (vdWs) heterostructures are of novel great importance to boosting the efficiency of photovoltaic devices. Herein, we propose first-principles hybrid density functional theory calculations for a two-dimensional gallium selenide/carbon-nitride (GaSe/C2N) vdWs heterostructure by investigating its photovoltaic performance, electronic and optical properties. The results show that the GaSe/C2N heterostructure is a type-II band alignment with an electronic direct band of 1.357 eV. The work function of the GaSe/C2N heterostructure is lower than that of a C2N sheet, which indicates that less energy will be required during the electron transfer. The GaSe/C2N vdWs heterostructure has a strong light absorption in the visible region. The energy conversion efficiency of the GaSe/C2N vdWs heterostructure exhibits a power conversion efficiency of 21.2%. These theoretical results predict that the GaSe/C2N vdWs heterostructure is a promising material in a high-performance photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.I. Hancevic, H.M. Nuñez, and J. Rosellón, Energy Policy 110, 478 (2017).

    Article  Google Scholar 

  2. K. Zweibel, Sol. Energy Mater. Sol. Cells 63, 375 (2000).

    Article  CAS  Google Scholar 

  3. K.L. Anaya and M.G. Pollitt, Energy Policy 105, 608 (2017).

    Article  Google Scholar 

  4. Y. He, Y. Pang, X. Li, and M. Zhang, Renew. Energy 118, 555 (2018).

    Article  Google Scholar 

  5. J. Yang, X. Li, W. Peng, F. Wagner, and D.L. Mauzerall, Environ. Res. Lett. 13, 64002 (2018).

    Article  CAS  Google Scholar 

  6. G.-L. Luo, C.-F. Long, X. Wei, and W.-J. Tang, Renew. Sustain. Energy Rev. 63, 93 (2016).

    Article  Google Scholar 

  7. A.S. Brouwer, M. van den Broek, Ö. Özdemir, P. Koutstaal, and A. Faaij, Energy Policy 89, 237 (2016).

    Article  Google Scholar 

  8. W. Geng, L. Zhang, Y.-N. Zhang, W.-M. Lau, and L.-M. Liu, J. Phys. Chem. C 118, 19565 (2014).

    Article  CAS  Google Scholar 

  9. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014).

    Article  CAS  Google Scholar 

  10. P.-P. Sun, Q.-S. Li, S. Feng, and Z.-S. Li, Phys. Chem. Chem. Phys. 18, 14408 (2016).

    Article  CAS  Google Scholar 

  11. M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, and M.S. White, Nat. Mater. 14, 1032 (2015).

    Article  CAS  Google Scholar 

  12. M. Makaremi, S. Grixti, K.T. Butler, G.A. Ozin, and C.V. Singh, ACS Appl. Mater. Interfaces 10, 11143 (2018).

    Article  CAS  Google Scholar 

  13. J. Fu, J. Yu, C. Jiang, and B. Cheng, Adv. Energy Mater. 8, 1701503 (2018).

    Article  CAS  Google Scholar 

  14. D. Liang, T. Jing, Y. Ma, J. Hao, G. Sun, and M. Deng, J. Phys. Chem. C 120, 24023 (2016).

    Article  CAS  Google Scholar 

  15. J. Li, Z. Chen, H. Yang, Z. Yi, X. Chen, W. Yao, T. Duan, P. Wu, G. Li, and Y. Yi, Nanomaterials 10, 257 (2020).

    Article  CAS  Google Scholar 

  16. X. Qian, J. Liu, L. Fu, and J. Li, Science 346, 1344 (2014).

    Article  CAS  Google Scholar 

  17. H. Chen, S. Zhang, W. Jiang, C. Zhang, H. Guo, Z. Liu, Z. Wang, F. Liu, and X. Niu, J. Mater. Chem. A 6, 11252 (2018).

    Article  CAS  Google Scholar 

  18. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013).

    Article  CAS  Google Scholar 

  19. J. Mahmood, E.K. Lee, M. Jung, D. Shin, I.-Y. Jeon, S.-M. Jung, H.-J. Choi, J.-M. Seo, S.-Y. Bae, and S.-D. Sohn, Nat. Commun. 6, 1 (2015).

    Article  CAS  Google Scholar 

  20. Y. Qu, F. Li, H. Zhou, and M. Zhao, Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  21. A. Goetzberger, J. Luther, and G. Willeke, Sol. Energy Mater. Sol. Cells 74, 1 (2002).

    Article  CAS  Google Scholar 

  22. X.-Z. Deng, Q.-Q. Zhao, Y.-Q. Zhao, and M.-Q. Cai, Curr. Appl. Phys. 19, 279 (2019).

    Article  Google Scholar 

  23. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, and A.F. Ismach, ACS Nano 7, 2898 (2013).

    Article  CAS  Google Scholar 

  24. Q. Xiang, J. Yu, and M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011).

    Article  CAS  Google Scholar 

  25. M. Ashwin Kishore and P. Ravindran, J. Phys. Chem. C 121, 22216 (2017).

    Article  CAS  Google Scholar 

  26. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 220, 567 (2005).

    CAS  Google Scholar 

  27. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, and Z. Kristallogr, Cryst. Mater. 220, 567 (2005).

    CAS  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  29. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  30. S. Grimme, J. Comput. Chem. 25, 1463 (2004).

    Article  CAS  Google Scholar 

  31. M.A. Kishore and P. Ravindran, Chem. Phys. Chem. 18, 1526 (2017).

    Article  CAS  Google Scholar 

  32. Z. Guan and S. Ni, Appl. Phys. A 123, 678 (2017).

    Article  CAS  Google Scholar 

  33. N. Wang, D. Cao, J. Wang, P. Liang, X. Chen, and H. Shu, Nanoscale 10, 12133 (2018).

    Article  CAS  Google Scholar 

  34. J. Sun, R. Zhang, X. Li, and J. Yang, Appl. Phys. Lett. 109, 133108 (2016).

    Article  CAS  Google Scholar 

  35. A.S. Chan, X. Fu, G.N. Panin, H.D. Cho, D.J. Lee, and T.W. Kang, Physica Status Solidi (RRL)–Rapid Res. Lett. 12, 1800226 (2018).

    Article  CAS  Google Scholar 

  36. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  37. K. Ghatak, K.N. Kang, E.-H. Yang, and D. Datta, Sci. Rep. 10, 1 (2020).

    Article  CAS  Google Scholar 

  38. W. Xu, C. Chen, C. Tang, Y. Li, and L. Xu, Sci. Rep. 8, 1 (2018).

    Article  CAS  Google Scholar 

  39. D. Perrone, M. Monteiro, and J.C. Nunes, The Chemistry of Selenium (London: The Royal Society of Chemistry, 2015), pp. 3–15.

  40. J. Barrett, Atomic Structure and Periodicity (London: Royal Society of Chemistry, 2002), pp. 59–91.

    Google Scholar 

  41. F. Opoku, K.K. Govender, C.G.C.E. van Sittert, and P.P. Govender, Int. J. Hydrog. Energy 43, 22253 (2018).

    Article  CAS  Google Scholar 

  42. S. Yang, Q. Yue, H. Cai, K. Wu, C. Jiang, and S. Tongay, J. Mater. Chem. C 4, 248 (2016).

    Article  CAS  Google Scholar 

  43. R.G. Pearson, Inorg. Chem. 27, 734 (1988).

    Article  CAS  Google Scholar 

  44. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, and J. He, Nanoscale 5, 8326 (2013).

    Article  CAS  Google Scholar 

  45. Y. Liu, S. Liu, T. Wu, H. Lin, and X. Zhang, J. Sol-Gel. Sci. Technol. 83, 315 (2017).

    Article  CAS  Google Scholar 

  46. J. Höcker, D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, and V. Dyakonov, Z. Naturforsch. A 74, 665 (2019).

    Article  CAS  Google Scholar 

  47. A. Subrahmanyam, K.K. Mahendra, and A.P. Kulshreshtha, In Proceedings of the National Solar Energy Convention (1979), pp. 474–477.

Download references

Acknowledgments

The authors will like to acknowledge the financial contributions from the Faculty of Science, Centre for Nanomaterials Science Research, University of Johannesburg, South Africa, and the National Research Foundation (TTK170405225933). This work was performed using the computational facilities provided by the Centre for High-Performance Computing (CHPC), Cape Town, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francis Opoku or Penny Poomani Govender.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoeu, S.E., Opoku, F. & Govender, P.P. Exploring the Optical, Structural and Electronic Properties of a Two-Dimensional GaSe/C2N van der Waals Heterostructure As a Photovoltaic Cell: A Computational Investigation. J. Electron. Mater. 50, 620–628 (2021). https://doi.org/10.1007/s11664-020-08606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08606-9

Keywords

Navigation