Skip to main content
Log in

Properties at the interface of the pristine CdSe and core–shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX2 (M: Mo, W; X: S, Se, Te) heterostructures from density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, eight van der Waals heterojunctions based on CdSe or CdSe-ZnS quantum dots (QDs) and four commonly used two-dimensional transition metal dichalcogenides (2D-TMDs) are theoretically designed. On the basis of the constructed structures, density functional theory (DFT) method is employed to investigate the structural and optoelectronic related properties of these heterojunctions in detail. Specifically, their electronic properties including charge density differences, density of states, and band offsets are calculated, based on which band alignment types as well as their potentials as novel photovoltaic materials are discussed. According to these calculations, we proposed that several van der Waals heterostructures including MoS2/CdSe, MoTe2/CdSe, WSe2/CdSe, MoTe2/CdSe-ZnS, and WSe2/CdSe-ZnS might be used as potential photovoltaic materials due to their type II band alignment characteristics. Moreover, the WSe2/CdSe-ZnS heterostructure is expected to have optimal photovoltaic performance attributed to their large bond offsets and band gaps, which could not only facilitate charge separation processes, but also slow down charge recombination. Our present theoretical work could be helpful for the future experimental design of novel CdSe QDs and 2D-TMD based van der Waals heterostructures with excellent photovoltaic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data could be accessed from the authors upon reasonable request.

Code availability

Not applicable.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  PubMed  Google Scholar 

  2. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726

    Article  CAS  PubMed  Google Scholar 

  3. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  CAS  PubMed  Google Scholar 

  4. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:2–5

    Article  CAS  Google Scholar 

  5. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  CAS  PubMed  Google Scholar 

  6. Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13:3664–3670

    Article  CAS  PubMed  Google Scholar 

  7. Ross JS, Wu S, Yu H, Ghimire NJ, Jones AM, Aivazian G, Yan J, Mandrus DG, Di X, Wang Y, Xu X (2013) Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4:1474

    Article  PubMed  CAS  Google Scholar 

  8. Mak KF, Shan J (2016) Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10:216–226

    Article  CAS  Google Scholar 

  9. Hong X, Kim J, Shi SF, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F (2014) Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9:682–686

    Article  CAS  PubMed  Google Scholar 

  10. Tedstone AA, Lewis DJ, O’Brien P (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mater 28:1965–1974

    Article  CAS  Google Scholar 

  11. Peng B, Ang PK, Loh KP (2015) Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10:128–137

    Article  CAS  Google Scholar 

  12. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–1120

    Article  CAS  PubMed  Google Scholar 

  13. Wu CC, Jariwala D, Sangwan VK, Marks TJ, Hersam MC, Lauhon LJ (2013) Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J Phys Chem Lett 4:2508–2513

    Article  CAS  Google Scholar 

  14. Chhowalla M, Shin HS, Eda G, Li LJ, Hua Z (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  PubMed  Google Scholar 

  15. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Long R, Prezhdo OV (2017) Charge separation and recombination in two-dimensional MoS2/WS2: time-domain ab initio modeling. Chem Mater 29:2466–2473

    Article  CAS  Google Scholar 

  17. Long R, Prezhdo OV (2016) Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals Junction. Nano Lett 16:1996–2003

    Article  CAS  PubMed  Google Scholar 

  18. Nie Z, Long R, Sun L, Huang CC, Zhang J, Xiong Q, Hewak DW, Shen Z, Prezhdo OV, Loh ZH (2014) Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano 8:10931–10940

    Article  CAS  PubMed  Google Scholar 

  19. Zheng Q, Saidi WA, Xie Y, Lan Z, Prezhdo OV, Petek H, Zhao J (2017) Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface. Nano Lett 17:6435–6442

    Article  CAS  PubMed  Google Scholar 

  20. Liu XY, Chen WK, Fang WH, Cui G (2019) Nonadiabatic dynamics simulations reveal distinct effects of the thickness of PTB7 on interfacial electron and hole transfer dynamics in PTB7@MoS2 HETEROSTRUCTURES. J Phys Chem Lett 10:2949–2956

    Article  CAS  PubMed  Google Scholar 

  21. Huang YL, Zheng YJ, Song Z, Chi D, Wee ATS, Quek SY (2018) The organic-2D transition metal dichalcogenide heterointerface. Chem Soc Rev 47:3241–3264

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Zhuge F, Hou J, Lv L, Luo P, Zhou N, Gan L, Zhai T (2018) van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 12:4062–4073

    Article  CAS  PubMed  Google Scholar 

  23. Zhong C, Sangwan VK, Wang C, Bergeron H, Hersam MC, Weiss EA (2018) Mechanisms of ultrafast charge separation in a PTB7/monolayer MoS2 van der Waals heterojunction. J Phys Chem Lett 9:2484–2491

    Article  CAS  PubMed  Google Scholar 

  24. Homan SB, Sangwan VK, Balla I, Bergeron H, Weiss EA, Hersam MC (2017) Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction. Nano Lett 17:164–169

    Article  CAS  Google Scholar 

  25. Liu X, Gu J, Ding K, Fan D, Hu X, Tseng YW, Lee YH, Menon V, Forrest SR (2017) Photoresponse of an organic semiconductor/two-dimensional transition metal dichalcogenide heterojunction. Nano Lett 17:3176–3181

    Article  CAS  PubMed  Google Scholar 

  26. Kafle TR, Kattel B, Lane SD, Wang T, Zhao H, Chan WL (2017) Charge transfer exciton and spin flipping at organic-transition-metal dichalcogenide interfaces. Nano Lett 11:10184–10192

    CAS  Google Scholar 

  27. Choi J, Zhang H, Choi JH (2016) Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. Nano Lett 10:1671–1680

    CAS  Google Scholar 

  28. Jariwala D, Howell SL, Chen KS, Kang J, Sangwan VK, Filippone SA, Turrisi R, Marks TJ, Lauhon LJ, Hersam MC (2016) Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett 16:497–503

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen EP, Carey BJ, Harrison CJ, Atkin P, Berean KJ, Gaspera ED, Ou JZ, Kaner RB, Kalantar-zadeh K, Daeneke T (2016) Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS2 nanosheets. Nanoscale 8:16276–16283

    Article  CAS  PubMed  Google Scholar 

  30. Zheng YJ, Huang YL, Chen Y, Zhao W, Eda G, Spataru CD, Zhang W, Chang YH, Li LJ, Chi D, Quek SY, Thye Shen Wee A (2016) Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 10:2476–2484

    Article  CAS  PubMed  Google Scholar 

  31. Shastry TA, Balla I, Bergeron H, Amsterdam SH, Marks TJ, Hersam MC (2016) Mutual photoluminescence quenching and photovoltaic effect in large-area single-layer MoS2-polymer heterojunctions. ACS Nano 10:10573–10579

    Article  CAS  PubMed  Google Scholar 

  32. Vélez S, Ciudad D, Island J, Buscema M, Txoperena O, Parui S, Steele GA, Casanova F, van der Zant HSJ, Castellanos-Gomez A, Hueso LE (2015) Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. Nanoscale 7:15442–15449

    Article  PubMed  CAS  Google Scholar 

  33. Furchi MM, Pospischil A, Libisch F, Burgdörfer J, Mueller T (2014) Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett 14:4785–4791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gan LY, Zhang Q, Cheng Y, Schwingenschlgl U (2014) Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers. J Phys Chem Lett 5:1445–1449

    Article  CAS  PubMed  Google Scholar 

  35. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  36. Hetsch F, Xu X, Wang H, Kershaw SV, Rogach AL (2011) Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device topologies. J Phys Chem Lett 2:1879–1887

    Article  CAS  Google Scholar 

  37. López-Luke T, Wolcott A, Xu LP, Chen S, Wen Z, Li J, De La Rosa E, Zhang JZ (2008) Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. J Phys Chem C 112:1282–1292

    Article  CAS  Google Scholar 

  38. Klimov VI (2007) Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu Rev Phys Chem 58:635–673

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse HW, Law M (2010) Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett 10:1960–1969

    Article  CAS  PubMed  Google Scholar 

  40. Cho KS, Lee EK, Joo WJ, Jang E, Kim TH, Lee SJ, Kwon SJ, Han JY, Kim BK, Choi BL, Kim JM (2009) High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat Photonics 3:341–345

    Article  CAS  Google Scholar 

  41. Law M, Luther JM, Song Q, Hughes BK, Perkins CL, Nozik AJ (2008) Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J Am Chem Soc 130:5974–5985

    Article  CAS  PubMed  Google Scholar 

  42. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  CAS  Google Scholar 

  43. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals Nat 404:59–61

    CAS  Google Scholar 

  44. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stalder R, Xie D, Zhou R, Xue J, Reynolds JR, Schanze KS (2012) Variable-gap conjugated oligomers grafted to CdSe nanocrystals. Chem Mater 24:3143–3152

    Article  CAS  Google Scholar 

  46. Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330:63–66

    Article  CAS  PubMed  Google Scholar 

  47. Sugawara M, Mukai K, Shoji H (1997) Effect of phonon bottleneck on quantum-dot laser performance. Appl Phys Lett 71:2791–2793

    Article  CAS  Google Scholar 

  48. Kufer D, Lasanta T, Bernechea M, Koppens FHL, Konstantatos G (2016) Interface engineering in hybrid quantum dot-2D phototransistors. ACS Photonics 3:1324–1330

    Article  CAS  Google Scholar 

  49. Zhong Y, Shao Y, Ma F, Wu Y, Huang B, Hao X (2017) Band-gap-matched CdSe QD/WS2 nanosheet composite: size-controlled photocatalyst for high-efficiency water splitting. Nano Energy 31:84–89

    Article  CAS  Google Scholar 

  50. Boulesbaa A, Wang K, Mahjouri-Samani M, Tian M, Puretzky AA, Ivanov I, Rouleau CM, Xiao K, Sumpter BG, Geohegan DB (2016) Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc 138:14713–14719

    Article  CAS  PubMed  Google Scholar 

  51. Prins F, Goodman AJ, Tisdale WA (2015) Erratum: Correction to reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 15:3655

    Article  CAS  PubMed  Google Scholar 

  52. Wei Y, Fang WH, Fang Q, Long R (2018) Nonadiabatic molecular dynamics simulation of charge separation and recombination at a WS2/QD heterojunction. J Phys Chem C 122:7041–7050

    Article  CAS  Google Scholar 

  53. Kasuya A, Sivamohan R, Barnakov YA, Dmitruk IM, Nirasawa T, Romanyuk VR, Kumar V, Mamykin SV, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Belosludov RV, Sundararajan V, Kawazoe Y (2004) Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat Mater 3:99–102

    Article  CAS  PubMed  Google Scholar 

  54. Puzder A, Williamson AJ, Gygi F, Galli G (2004) Self-healing of CdSe nanocrystals: first-principles calculations. Phys Rev Lett 92:217401.1-217401.4

    Article  CAS  Google Scholar 

  55. Kilina SV, Neukirch AJ, Habenicht BF, Kilin DS, Prezhdo OV (2013) Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys Rev Lett 110:180404

    Article  PubMed  CAS  Google Scholar 

  56. Trivedi DJ, Wang L, Prezhdo OV (2015) Auger-mediated electron relaxation is robust to deep hole traps: time-domain ab initio study of CdSe quantum dots. Nano Lett 15:2086–2091

    Article  CAS  PubMed  Google Scholar 

  57. Liu J, Kilina SV, Tretiak S, Prezhdo OV (2015) Ligands slow down pure-dephasing in semiconductor quantum dots. ACS Nano 9:9106–9116

    Article  CAS  PubMed  Google Scholar 

  58. Kilina SV, Kilin DS, Prezhdo V (2009) Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation. ACS Nano 3:93–99

    Article  CAS  PubMed  Google Scholar 

  59. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B: Condens Matter Mater Phys 33:8822–8824

    Article  CAS  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  61. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  62. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Article  CAS  Google Scholar 

  63. Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906

    Article  CAS  Google Scholar 

  64. Guidon M, Schiffmann F, Hutter J, Vandevondele J (2008) Ab initio molecular dynamics using hybrid density functionals. J Chem Phys 128:3098

    Article  CAS  Google Scholar 

  65. Guidon M, Hutter J, VandeVondele J (2009) Robust periodic hartree-fock exchange for large-scale simulations using Gaussian basis sets. J Chem Theory Comput 5:3010–3021

    Article  CAS  PubMed  Google Scholar 

  66. Guidon M, Hutter J, VandeVondele J (2010) Auxiliary density matrix methods for hartree-fock exchange calculations. J Chem Theory Comput 6:2348–2364

    Article  CAS  PubMed  Google Scholar 

  67. Kühne TD, Iannuzzi M, Ben MD, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J (2020) CP2K: an electronic structure and molecular dynamics software package – quickstep: efficient and accurate electronic structure calculations. J Chem Phys 152:194103

    Article  PubMed  CAS  Google Scholar 

  68. Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662

    Article  CAS  Google Scholar 

  69. Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 114:145–152

    Article  CAS  Google Scholar 

  70. VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 127:114105–114109

    Article  PubMed  CAS  Google Scholar 

  71. Björkman T, Gulans A, Krasheninnikov V, Nieminen (2012) van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys Rev Lett 108:235502

    Article  PubMed  CAS  Google Scholar 

  72. Dung VD, Giovanni DL, Hyungduk K, Jaehong P, Wenmeng W, Doyeong S, Hoki S, Quyet VL, Tuan VN, Vo VT, Gianfranco P, In-Hwan L (2021) LaFeO3 meets nitrogen-doped graphene functionalized with ultralow Pt loading in an impactful Z-scheme platform for photocatalytic hydrogen evolution. J Mater Chem A 10:3330–3340

    Google Scholar 

  73. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi A (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Article  CAS  Google Scholar 

  74. Su Q, Li Y, Hu R, Song F, Liu SY, Guo GP, Zhu SM, Liu WB, Pan J (2020) Heterojunction photocatalysts based on 2D materials: the role of configuration. Adv Sustainable Syst 4:2000130

    Article  CAS  Google Scholar 

  75. Chris G, Van de W, Richard MM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35:8154–8165

    Article  Google Scholar 

  76. Conesa JC (2012) Modeling with hybrid density functional theory the electronic band alignment at the zinc oxide–anatase interface. J Phys Chem C 116:18884–18890

    Article  CAS  Google Scholar 

  77. Wei SH, Zunger A (1996) Valence band splittings and band offsets of AlN, GaN, and InN. Appl Phys Lett 69:2719–2721

    Article  CAS  Google Scholar 

  78. Zhang ZF, Qian QK, Li BK, Chen KJ (2018) Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater, Interfaces 10:17419–17426

    Article  CAS  Google Scholar 

  79. Liberto GD, Pacchioni G (2021) Band offset in semiconductor heterojunctions. J Phys Condens Matter 33:415002

    Article  CAS  Google Scholar 

  80. Gan LY, Zhang QY, Cheng YC, Schwingenschlögl U (2014) Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers. J Phys Chem Lett 5:1445–1449

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project is supported by the Sichuan Engineering Laboratory of Livestock Manure Treatment and Recycling, and High Performance Computing Centre of Sichuan Normal University, China.

Author information

Authors and Affiliations

Authors

Contributions

Xin Wang, data curation, formal analysis, writing-original draft; Shuai Liu, data curation, writing and reviewing; Yang Chen, data curation; Yan Zheng, supervision; Laicai Li, supervision and editing.

Corresponding authors

Correspondence to Yan Zheng or Laicai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 525 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, S., Chen, Y. et al. Properties at the interface of the pristine CdSe and core–shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX2 (M: Mo, W; X: S, Se, Te) heterostructures from density functional theory. J Mol Model 28, 220 (2022). https://doi.org/10.1007/s00894-022-05194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05194-9

Keywords

Navigation