Skip to main content
Log in

Thermal Analysis, Dielectric Response and Electrical Conductivity of Silicon Phthalocyanine Dichloride (SiPcCl2) Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This research is a detailed examination of the effect of post-annealing on the structure and electrical conductivity of silicon phthalocyanine dichloride (SiPcCl2) thin films. Differential thermal analysis (DTA) is used to determine the temperature limit of thermal stability for a sample of silicon phthalocyanine dichloride (SiPcCl2). The results of differential thermal analysis (DTA) proved that silicon phthalocyanine dichloride (SiPcCl2) is thermally stable up to 415 K. The dielectric behavior and the electrical conductivity of silicon phthalocyanine dichloride (SiPcCl2) thin films were investigated under a temperature effect from 303 K to 383 K and a frequency from 200 Hz to 20 MHz. The frequency and temperature dependence of dielectric loss and dielectric constant values were explained in terms of dielectric polarization theory. The alternative current (AC) conductivity response toward the frequency change obeys Jonscher’s power law. The correlated barrier hopping (CBH) model is utilized and adapted to fit the conduction mechanism in the high- and low-frequency regions. Both the complex electric modulus and the impedance formalisms are used to illustrate the dielectric characteristics of the silicon phthalocyanine dichloride (SiPcCl2). The potential height value of the hopping barrier, Wm, and activation energy value, Eac, for dielectric relaxation were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shao and Y. Yang, Adv. Funct. Mater. 15, 1781 (2005).

    Article  CAS  Google Scholar 

  2. S.A. Devaprasad and J. Madhavan, Arch. Appl. Sci. Res. 2, 26 (2010).

    Google Scholar 

  3. G.D. Sharma, S.K. Gupta, and M.S. Roy, Thin Solid Films 333, 176 (1998).

    Article  CAS  Google Scholar 

  4. Z. Bao, A. Dodabalapur, and A.J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).

    Article  CAS  Google Scholar 

  5. H. Sirringhaus, N. Tessler, and R.H. Friend, Science 280, 1741 (1998).

    Article  CAS  Google Scholar 

  6. A. Babel and S.A. Jenekhe and, J. Am. Chem. Soc. 125, 13656 (2003).

    Article  CAS  Google Scholar 

  7. D. El-Damhogi, H. El-Mallah, M. Abd el-Salam, and E. Elesh, Optical Quantum Electr. 52, 429 (2020).

    Article  CAS  Google Scholar 

  8. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Science 270, 1789 (1995).

    Article  CAS  Google Scholar 

  9. S.A. Jenekhe and J.A. Osaheni, Science 265, 765 (1994).

    Article  CAS  Google Scholar 

  10. A. Kraft, A.G. Grimsdale, and A.B. Holmes, Angew. Chem. Int. Ed. Engl. 37, 402 (1998).

    Article  Google Scholar 

  11. X. Zhang and S.A. Jenekhe, Macromolecules 33, 2069 (2000).

    Article  CAS  Google Scholar 

  12. S.A. Jenekhe and S. Yi, Appl. Phys. Lett. 77, 2635 (2000).

    Article  CAS  Google Scholar 

  13. L. Kilmmert and D. Haarer, Adv. Mater. 7, 495 (1995).

    Article  Google Scholar 

  14. J.W. Gardner, M.Z. Iskandari, and B. Bott, Sens. Actuators, B 9, 133 (1992).

    Article  CAS  Google Scholar 

  15. R. Rellaa, A. Rzzob, A. Licciullic, P. Sicilianoa, L. Troisid, and L. Vallic, Mater. Sci. Eng., C 22, 439 (2002).

    Article  Google Scholar 

  16. F.Z. Henari, J. Opt. A: Pure Appl. Opt. 3, 188 (2001).

    Article  CAS  Google Scholar 

  17. N.M. Amar, A.M. Saleh, and R.D. Gould, Appl. Phys. A 76, 77 (2003).

    Article  CAS  Google Scholar 

  18. M. El- Mallah, M. Abd- El Salam, D. El- Damhogi, and E. ELesh, Radiat. Phys. Chem. 1, 494 (2020).

    Google Scholar 

  19. T.M. Grant, N.A. Rice, L. Muccioli, F. Castet, and B.H. Lessard, ACS Appl. Electron. Mater. 1, 494 (2019).

    Article  CAS  Google Scholar 

  20. A. K. Ray, in Meeting Abstracts, The Electrochemical Society (2019), p. 1245

  21. Q. Song, T. Lin, X. Sun, B. Chu, Z. Su, H. Yang, and C.S. Lee, ACS Appl. Mater. Interfaces 10, 8909 (2018).

    Article  CAS  Google Scholar 

  22. O.A. Melville, B.H. Lessard, and T.P. Bender, ACS Appl. Mater. Interfaces 7, 13105 (2015).

    Article  CAS  Google Scholar 

  23. C. Zheng, D.Z. Bo, Z.M. Yang, L.Z. Yue, D.H. Liang, Z. Ye, Y.Y. Hong, and L.J. Chao, Chin. Phys. Lett. 29, 078801 (2012).

    Article  CAS  Google Scholar 

  24. A. Elghandour, M. Farhat, O. Hameed, and S.S.A. Obayya, Mater. Elect. 29, 17750 (2018).

    Article  CAS  Google Scholar 

  25. A. Altindal, Z.Z. zturk, S. Dabak, and B. lu, Sens.Acuators B 77, 389 (2001).

    Article  CAS  Google Scholar 

  26. T. Atwee, H. El-Mallah, H. Zeyada, and D. El-Damhogi, Appl. Phys. A 124, 554 (2018).

    Article  CAS  Google Scholar 

  27. B. Ramaki, G. Guillard, and D. Mayes, Opt. Mater. 9, 240 (1998).

    Article  Google Scholar 

  28. H.M. Zeyada and M.M. Makhlouf, Opt. Mater. 54, 181 (2016).

    Article  CAS  Google Scholar 

  29. S.R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  CAS  Google Scholar 

  30. S.R. Elliott, Phil. Mag. 36, 1291 (1977).

    Article  CAS  Google Scholar 

  31. A.R. Long, Adv. Phys. 31, 553 (1982).

    Article  CAS  Google Scholar 

  32. H. Zeyada, H. El-Mallah, T. Atwee, and D. El-Damhogi, Spectrochimica Acta Part A Mol. Biomol. Spectros. 179, 120 (2017).

    Article  CAS  Google Scholar 

  33. A.M. Saleh, A.O. Abu-Hilal, and R.D. Gould, Current Appl. Phys. 3, 354 (2003).

    Article  Google Scholar 

  34. R.D. Gould and A.K. Hassan, Thin Solid Films 223, 334 (1993).

    Article  CAS  Google Scholar 

  35. A.N. Fernandes, T.H. Richardson, D. Lacey, and J. Hayley, Dye. Pigment. 80, 141 (2009).

    Article  CAS  Google Scholar 

  36. D.F. Shriver and P.W. Atkins, Shriver & Atkins’ Inorganic Chemistry, 4th ed. (Oxford: University Press, Oxford, 2006), p. 189.

    Google Scholar 

  37. G. klančnik, J. Medved, and P. Mrvar, Mater. Environ. 57, 86 (2010).

    Google Scholar 

  38. H. Zeyada, F. El-Taweel, M. El-Nahass, and M. El-Shabaan, Chin. Phys. B 25, 077701 (2016).

    Article  CAS  Google Scholar 

  39. N. Elminshawy, M. El-Ghandoura, Y. Elhenawya, M. Bassyounib, D. El-Damhogic, and M. Addas, Sol. Energy 193, 706 (2019).

    Article  Google Scholar 

  40. I. Bechibani, A. Zaafouri, M. Dammak, and L. Ktari, J. Alloys Compounds 724, 958 (2017).

    Article  CAS  Google Scholar 

  41. A.A.M. Farag, A.M. Mansour, A.H. Ammar, M. Abdel Rafea, and A.M. Farid, J. Alloys Comp. 513, 404 (2012).

    Article  CAS  Google Scholar 

  42. A. Saif and P. Poopalan, J. Mater. Sci. Technol. 27, 802 (2011).

    Article  CAS  Google Scholar 

  43. A.A. Atta, J. Alloys Comp. 480, 564 (2009).

    Article  CAS  Google Scholar 

  44. S.A. Mansour, I. Yahia, and G.B. Sakr, Solid State Commun. 150, 1386 (2010).

    Article  CAS  Google Scholar 

  45. A.A.M. Farag, F.S. Terra, and G.M. Mahmoud, Synth. Met. 160, 743 (2010).

    Article  CAS  Google Scholar 

  46. H. El- Mallah, M. Abd- El Salam, E. ELesh, D.. El- Damhogi, Optik - International Journal for Light and Electron Optics 200, 163459 (2020).

  47. H. Mallah, M. Salam, E. Lesh, and D. ElDamhogi, Optik Int. J. Light Electron Optics 200, 163459 (2020).

    Article  CAS  Google Scholar 

  48. A. Tabib, N. Sdiri, H. Elhouichet, and M. Fe´rid, J. Alloy. Compd. 622, 687 (2015).

    Article  CAS  Google Scholar 

  49. M.S. Meikhail, A.H. Oraby, M.M. El-Nahass, H.M. Zeyada, and A.A. Al Muntaser, Phys. B Condens. Matter 539, 1 (2018).

    Article  CAS  Google Scholar 

  50. J. Trzmiel, A. Sieradzki, A. Jurlewicz, and Z.T. Kuznicki, Current Appl. Phys. 14, 991 (2014).

    Article  Google Scholar 

  51. A. Karabulut, A. Türüt, and Ş. Karataş, J. Mol. Struct. 1157, 513 (2018).

    Article  CAS  Google Scholar 

  52. A. Tataroǧlu, İ. Yücedaǧ, and Ş. Altindal, Microelectr. Eng. 85, 1518 (2008).

    Article  CAS  Google Scholar 

  53. ShM Morgan, N.A. El-Ghamaz, and M.A. Diab, J. Mol. Struct. 1160, 227 (2018).

    Article  CAS  Google Scholar 

  54. H. Abdel-Khalek, M. Abd-El Salam, and A. El-Mahalawy, J. Electr. Mater. 48, 3736 (2019).

    Article  CAS  Google Scholar 

  55. K. Mahato, A. LoDutta, and T. Inha, Phys. B 406, 2703 (2011).

    Article  CAS  Google Scholar 

  56. N. Elminshawy, M. El Ghandour, H. Gad, D. El-Damhogi, K. El-Nahhas, and M. Addas, Geothermics 82, 7 (2019).

    Article  Google Scholar 

  57. E. Elesh, Z. Mohamed, and M.S. Dawood, J. Electr. Mater. 49, 4 (2020).

    Google Scholar 

  58. M. Chi-Mei, Z. Lide, and W. Guozhong, Nanostruct. Mater. 6, 823 (1995).

    Article  Google Scholar 

  59. M.M. El-Nahass, A.A. Atta, M.A. Kamel, and S.Y. Huthaily, Vacuum 91, 14 (2013).

    Article  CAS  Google Scholar 

  60. I. Yahia, N. Hegab, and A. Shakra, AL-Ribaty, Physica B 407, 2476 (2012).

    Article  CAS  Google Scholar 

  61. J. M. Stevels, Handbuch der Physik, in Flugge (ed.), Springer, Berlin (1975), p. 350.

  62. N. Elminshawy, M. Gadalla, M. Bassyouni, K. El-Nahhas, A. Elminshawy, and Y. Elhenawy, Renewable Energy 162, 802 (2020).

    Article  Google Scholar 

  63. R.H. Chen, R.Y. Chang, and S.C. Shern, J. Phys. Chem. Solids 63, 2069 (2002).

    Article  CAS  Google Scholar 

  64. M. Belal Hossen and A.K.M. Akther Hossain, J. Adv. Ceram. 4, 217 (2015).

    Article  CAS  Google Scholar 

  65. M. Hutchins, O. ALkhair, M. ELnahass, and K. Abdel Hady, Non Cryst Solid 353, 4137 (2007).

    Article  CAS  Google Scholar 

  66. A. Mogus, B. Santic, D. Day, and C. Ray, Non Cryst. Solid 351, 3235 (2005).

    Article  CAS  Google Scholar 

  67. A. El-ghandour, O. Hameed, and S.A. Obayya, J. Mater. Sci.: Mater. Electron. 29, 17750 (2018).

    CAS  Google Scholar 

  68. F. R. Siddiqui, N. A. S. Elminshawy and M. F. Addas, Desalination 399, 78 (2016). (2006) 261

  69. M.M. El-Nahass, A.M. Farid, K.F.A. El-Rahman, and H.A.M. Ali, Phys. B Condens. Matter. 403, 2331 (2008).

    Article  CAS  Google Scholar 

  70. I.M. Soliman, M.M. El-Nahass, and Y. Mansour, Solid State Commun. 225, 17 (2016).

    Article  CAS  Google Scholar 

  71. R.C. Cherianand C.S. Menon, J. Phys. Chem. Solids 69, 2858 (2008).

  72. A. Elminshawy, K. Morad, N. A. S. Elminshawy and Y. Elhenawy, Int. Journal Energy Res 1, (2020), DOI: 10.1002/er.5991, wileyonlinelibrary.com/journal/er

  73. M. Singh, A. Mahajan, N. Gupta, R.K. Bedi, B. Aldo, D. Chimica, and V. Orabona, Electron. Mater. Lett. 11, 118 (2015).

    Article  CAS  Google Scholar 

  74. M.E. Azim-Araghi and F. Pirifard, Morphology. Mater. Sci. Semicond. Process. 16, 1466 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of this research provided by Port-Said University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. El-Damhogi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, M.Ae., El-Mallah, H.M., El-Damhogi, D.G. et al. Thermal Analysis, Dielectric Response and Electrical Conductivity of Silicon Phthalocyanine Dichloride (SiPcCl2) Thin Films. J. Electron. Mater. 50, 562–570 (2021). https://doi.org/10.1007/s11664-020-08604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08604-x

Keywords

Navigation