Skip to main content
Log in

Adsorption of Cs-O on Graphene: Modification of the Anderson–Newns Model for the Calculation of Work Function Variation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A modified Anderson–Newns (A–N) model for calculating the work function and the charge transfer of Cs-O-adsorbed graphene surface with the coverage of adsorbed particles is proposed. The calculation of the length of adsorption bond λ is optimized. The work function and the amount of charge transfer for different coverage of Cs-O molecules are calculated, and the calculated results variations are in reasonable agreement with the experimental data. As coverage θ increases, the amount of charge transfer Z decreases and the work function φ first decreases to a certain value and then increases slightly. When θ = 0.8, the work function φ reaches a minimum value of 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Go David, R. Haase John, and J. George, Front. Mech. Eng. 3, 3389 (2017).

    Google Scholar 

  2. M. Caragiu and S. Finberg, J. Phys. Condens. Matter 17, R995 (2005).

    Article  CAS  Google Scholar 

  3. J.M. Houston and H.F. Webster, Adv. Electron. Electron Phys. 17, 125 (1963).

    Article  Google Scholar 

  4. B.S. Rump and B.L. Gehman, J. Appl. Phys. 36, 2347 (1965).

    Article  CAS  Google Scholar 

  5. A.S. Mustafaev, V.I. Yarygin, V.S. Soukhomlinov, A.B. Tsyganov, and I.D. Kaganovich, J. Appl. Phys. 124, 123304 (2018).

    Article  Google Scholar 

  6. M.A. Ru and Z. Jianping, At. Energy Sci. Technol. 53, 24 (2019).

    Google Scholar 

  7. T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, and C.T. Chan, Phys. Rev. B 68, 195408 (2003).

    Article  Google Scholar 

  8. J.A. Rothschild and M. Eizenberg, Phys. Rev. B Condens. Matter 81, 224201 (2010).

    Article  Google Scholar 

  9. O.E. Tereshchenko, V.L. Alperovich, and A.S. Terekhov, J. Exp. Theor. Phys. Lett. 79, 131 (2004).

    Article  CAS  Google Scholar 

  10. SYu Davydov, Tech. Phys. Lett. 35, 998 (2009).

    Article  CAS  Google Scholar 

  11. P.W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  CAS  Google Scholar 

  12. D.M. Newns, Phys. Rev. 178, 1123 (1969).

    Article  CAS  Google Scholar 

  13. M. Breitholtz, J. Algdal, T. Kihlgren, S.A. Lindgren, and L. Walldén, Phys. Rev. B Condens. Matter 70, 5108 (2004).

    Article  Google Scholar 

  14. L. Jin, H.G. Fu, Y. Xie, and H.T. Yu, Chin. J. Inorg. Chem. 31, 446 (2015).

    CAS  Google Scholar 

  15. J.D. White, J. Cui, M. Strauss, R.D. Diehl, F. Ancilotto, and F. Toigo, Surf. Sci. 307–309, 1134 (1994).

    Article  Google Scholar 

  16. N. Garcia and A. Damask, Physical Quantities (New York: Springer, 1991).

    Book  Google Scholar 

  17. C. Kittel, Introduction to Solid State Physics, 7th ed. (New York: Wiley, 2007).

    Google Scholar 

  18. B. Woratschek, W. Sesselmann, J. Küppers, G. Ertl, and H. Haberland, J. Chem. Phys. 86, 2411 (1987).

    Article  CAS  Google Scholar 

  19. S. Yun, Z. Liu, P. Pianetta, and D. Lee, J. Appl. Phys. 102, 0749081 (2007).

    Google Scholar 

  20. C.C. Phillips, A.E. Hughes, and W. Sibbett, J. Phys. Appl. Phys. 17, 1713 (1984).

    Article  CAS  Google Scholar 

  21. B.J. Stocker, Surf. Sci. 47, 501 (1975).

    Article  CAS  Google Scholar 

  22. Alejandro Londono-Hurtado, Izabela Szlufarska, and Dane Morgan, J. Nucl. Mater. 437, 389 (2013).

    Article  CAS  Google Scholar 

  23. D.L. Smith and D.A. Huchital, J. Appl. Phys. 43, 2624 (1972).

    Article  CAS  Google Scholar 

  24. J.J. Uebbing and L.W. James, J. Appl. Phys. 41, 4505 (1970).

    Article  CAS  Google Scholar 

  25. M.T. Johnson, H.I. Starnberg, and H.P. Hughes, Surf. Ence 178, 290 (1986).

    CAS  Google Scholar 

  26. R.C. Tatar and S. Rabii, Phys. Rev. B Condens. Matter 25, 4126 (1982).

    Article  CAS  Google Scholar 

  27. S.Y. Davydov and S.V. Troshin, Phys. Solid State 49, 1583 (2007).

    Article  CAS  Google Scholar 

  28. M. Kamaratos, Appl. Surf. Sci. 185, 66 (2001).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Youth Program of National Natural Science Foundation of China (no. 21805283) and the Key Research Program of the Chinese Academy of Sciences (grant no. ZDRW-KT-2019-1-0202). The authors would like to thank Dr. Zhizhong Jiang, Dr. Gang Xu and Dr. Huiqing Hu for the inspiring discussion and warm help and contributions to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Jiang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript. The manuscript was approved by all authors for publication. On behalf of all authors, the corresponding author declares that the work described is original research that has not been published previously, and is not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, G., Hu, H. et al. Adsorption of Cs-O on Graphene: Modification of the Anderson–Newns Model for the Calculation of Work Function Variation. J. Electron. Mater. 50, 186–191 (2021). https://doi.org/10.1007/s11664-020-08574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08574-0

Keywords

Navigation