Skip to main content

Advertisement

Log in

Density functional theory study on the hydrolysis process of COS and CS2 on a graphene surface

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The adsorption behavior and hydrolysis mechanism of COS and CS2 on a graphene surface were studied by using density functional theory. It could be concluded that the most stable adsorption configuration for COS was in the form of straight line at the B site, and the adsorption energy was − 0.830 eV. However, the most stable adsorption structure for CS2 with an adsorption energy of − 0.867 eV was the three atoms in CS2 interacting with the C atoms on the graphene surface. By contrasting the two values, the conclusion that the CS2 would adsorb on the graphene surface firstly when the COS and CS2 exist simultaneously was easy to draw. Meanwhile, for the H2O, the maximal adsorption energy was − 0.244 eV and the corresponding configurations were in the form of a downward and upward “V”. So the COS and CS2 will adsorb on the graphene surface first when they react with H2O. Then, the gaseous H2O and adsorptive COS/CS2 create a low-energy system. The energy barrier values of COS and CS2 were 122.648 and 314.108 kcal/mol, respectively, during the hydrolysis process on the graphene surface. And the reaction energies were − 6.335 and 167.561 kcal/mol, respectively. Namely, when the two molecules resulted in the same final products, the COS initiated the reaction more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Wang, D. Wu, S. Wang, Q. Yuan, J. Environ. Sci. China 20, 436 (2008)

    Article  CAS  Google Scholar 

  2. A.L. Rich, J.T. Patel, Environ. Health Insights 10, 51 (2016)

    Google Scholar 

  3. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  CAS  Google Scholar 

  4. B.C. Wood, S.Y. Bhide, D. Dutta, V.S. Kandagal, A.D. Pathak, S.N. Punnathanam, K.G. Ayappa, S. Narasimhan, J. Chem. Phys. 137, 8260 (2012)

    Article  Google Scholar 

  5. X. Sun, P. Ning, X.L. Tang, H.H. Yi, K. Li, D. He, X.M. Xu, B. Huang, R.Y. Lai, J. Energy Chem. 23, 221 (2014)

    Article  CAS  Google Scholar 

  6. H.H. Yi, K. Li, X.L. Tang, P. Ning, J.H. Peng, C. Wang, D. He, Chem. Eng. J. 230, 220 (2013)

    Article  CAS  Google Scholar 

  7. P. Ning, K. Li, H.H. Yi, X.L. Tang, J.H. Peng, D. He, H.Y. Wang, S.Z. Zhao, J. Phys. Chem. C 116, 17055 (2012)

    Article  CAS  Google Scholar 

  8. K. Li, X. Song, P. Ning, H.H. Yi, X.L. Tang, C. Wang, Energy Technol. Ger. 3, 136 (2015)

    Article  CAS  Google Scholar 

  9. L. Yu, H. Gao, J. Zhao, J. Qiu, C. Yu, J. Comput. Theor. Nanosci. 8, 2492 (2011)

    Article  CAS  Google Scholar 

  10. W.J. Liu, H. Jiang, H.Q. Yu, Chem. Rev. 115, 12251 (2015)

    Article  CAS  Google Scholar 

  11. H.J. Zhang, W.L. Cen, J. Liu, J.X. Guo, H.Q. Yin, P. Ning, Appl. Surf. Sci. 324, 61 (2014)

    Article  Google Scholar 

  12. H.H. Yi, S.Z. Zhao, X.L. Tang, C.Y. Song, F.Y. Gao, B.W. Zhang, Z.X. Wang, Y.R. Zuo, Fuel 128, 268 (2014)

    Article  CAS  Google Scholar 

  13. W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Bioresour. Technol. 102, 8247 (2011)

    Article  CAS  Google Scholar 

  14. J. Li, D.H.L. Ng, P. Song, C. Kong, Y. Song, P. Yang, Biomass Bioenerg. 75, 189 (2015)

    Article  Google Scholar 

  15. K. Sakanishi, Z. Wu, A. Matsumura, I. Saito, T. Hanaoka, T. Minowa, M. Tada, T. Iwasaki, Catal. Today 104, 94 (2005)

    Article  CAS  Google Scholar 

  16. C. Deng, Q.G. Li, Y. Ren, N.B. Wong, S.Y. Chu, H.J. Zhu, J. Comput. Chem. 29, 466 (2008)

    Article  CAS  Google Scholar 

  17. C. Deng, X.P. Wu, X.M. Sun, Y. Ren, Y.H. Sheng, J. Comput. Chem. 30, 285 (2010)

    Article  Google Scholar 

  18. C. Wilson, D.M. Hirst, J. Chem. Soc. Faraday Trans. 91, 793 (1995)

    Article  CAS  Google Scholar 

  19. M.L. Mckee, Chem. Phys. Lett. 201, 41 (1993)

    Article  CAS  Google Scholar 

  20. H. Ghiassi, H. Raissi, RSC Adv. 5, 84022 (2015)

    Article  CAS  Google Scholar 

  21. W.J. Wang, L. Fan, G. Wang, Appl. Surf. Sci. 414, 92 (2017)

    Article  CAS  Google Scholar 

  22. X.Q. Niu, L.X. Ling, J.J. Song, B.J. Wang, China. Sci. Paper 8, 1261 (2013)

    CAS  Google Scholar 

  23. O. Faye, A. Raj, V. Mittal, A.C. Beye, Comp. Mater. Sci. 117, 110 (2016)

    Article  CAS  Google Scholar 

  24. G. Feng, C.F. Huo, C.M. Deng, L. Huang, Y.W. Li, J.G. Wang, H.J. Jiao, J. Mol. Catal. A Chem. 304, 58 (2009)

    Article  CAS  Google Scholar 

  25. W.J. Liu, H. Jiang, H.Q. Yu, Chem. Rev. 115, 12251 (2015)

    Article  CAS  Google Scholar 

  26. B. Huang, B. Chen, R. Chen, Chin. J. Chem. Phys. 28, 143 (2015)

    Article  CAS  Google Scholar 

  27. E.N.C. Paura, W.F.D. Cunha, L.F. Roncaratti, J.B.L. Martins, G.M.E. Silva, R. Gargano, RSC Adv. 5, 27412 (2015)

    Article  Google Scholar 

  28. X.P. Chen, N. Yang, J.M. Ni, M. Cai, H.Y. Ye, C.K.Y. Wong, S.Y.Y. Leung, T.L. Ren, IEEE Electr. Device Lett. 36, 1366 (2015)

    Article  CAS  Google Scholar 

  29. S. Seenithurai, R.K. Pandyan, S.V. Kumar, P. Munieswaran, C. Saranya, AIP Conf. Proc. 1665, 377 (2015)

    Google Scholar 

  30. W.B. Liu, Y. Liu, R.G. Wang, L. Hao, D.J. Song, Z. Li, Phys. Status Solidi B 251, 229 (2014)

    Article  CAS  Google Scholar 

  31. L. Ling, R. Zhang, P. Han, B. Wang, J. Mol. Model. 18, 1625 (2012)

    Article  CAS  Google Scholar 

  32. X.H. Li, S.J. Ren, X.G. Wei, Y. Zeng, G.W. Gao, Y. Ren, J. Zhu, K.C. Lau, W.K. Li, J. Phys. Chem. A 118, 3503 (2014)

    Article  CAS  Google Scholar 

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 3865 (1997)

    Article  Google Scholar 

  34. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  CAS  Google Scholar 

  35. G.S. Rao, T. Hussain, M.S. Islam, M. Sagynbaeva, D. Gupta, P. Panigrahi, R. Ahuja, Nanotechnology 27(1), 015502 (2015)

    Article  Google Scholar 

  36. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  CAS  Google Scholar 

  37. T.A. Halgren, W.N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21667015, 51408282 and 51708266), China Scholarship Council (201508530017, 201608530169 and 201608740011) and the Analysis and Testing Foundation of Kunming University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Yang, H., Ning, P. et al. Density functional theory study on the hydrolysis process of COS and CS2 on a graphene surface. Res Chem Intermed 44, 2637–2651 (2018). https://doi.org/10.1007/s11164-018-3251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3251-1

Keywords

Navigation