Abstract
Wafer-level solid liquid interdiffusion (SLID) bonding, also known as transient liquid-phase bonding, is becoming an increasingly attractive method for industrial usage since it can provide simultaneous formation of electrical interconnections and hermetic encapsulation for microelectromechanical systems. Additionally, SLID is utilized in die-attach bonding for electronic power components. In order to ensure the functionality and reliability of the devices, a fundamental understanding of the formation and evolution of interconnection microstructures, as well as global and local stresses, is of utmost importance. In this work a low-temperature Cu-In-Sn based SLID bonding process is presented. It was discovered that by introducing In to the traditional Cu-Sn metallurgy as an additional alloying element, it is possible to significantly decrease the bonding temperature. Decreasing the bonding temperature results in lower CTE induced global residual stresses. However, there are still several open issues to be studied regarding the effects of dissolved In on the physical properties of the Cu-Sn intermetallics. Additionally, partially metastable microstructures were observed in bonded samples that did not significantly evolve during thermal annealing. This indicates the Cu-In-Sn SLID bond microstructure is extremely stable.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. Tilli, M. Paulasto-Krockel, M. Petzold, H. Theuss, T. Motooka, and V. Lindroos, Handbook of Silicon Based MEMS Materials and Technologies, 3rd ed. (Amsterdam: Elsevier, 2020).
L. Sun, M. Chen, L. Zhang, P. He, and L. Xie, J. Alloy. Compd. 818, 1 (2020).
I. Welch, W.J.C.J. Chae, S.-H.L.S.-H. Lee, N. Yazdi, and K. Najafi, in Proceedings of 13th International Conference on Solid-State Sensors, Actuators and Microsystems (2005), pp. 1350–1353.
V. Dragoi, E. Cakmak, and E. Pabo, Rom. J. Inf. Sci. Technol. 13, 65 (2010).
A. Duan, K. Wang, K.E. Aasmundtveit, and N. Hoivik, in 4th Electronic System-Integration Technology Conference (ESTC) (2012).
W.P. Lin, C. Sha, and C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 903 (2012).
C. Lee, A. Yu, L. Yan, H. Wang, J.H. He, Q.X. Zhang, and J.H. Lau, Sens. Actuat. A-Phys. 154, 85 (2009).
J.C. Lin, L.W. Huang, G.Y. Jang, and S.L. Lee, Thin Solid Films 410, 212 (2002).
B.J. Grummel, Z.J. Shen, H.A. Mustain, and A.R. Hefner, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 716 (2013).
C.C. Lee, C.Y. Wang, and G. Matijasevic, IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 311 (1993).
V. Chidambaram, C. Bangtao, G.C. Lip, and D. Rhee Min Woo, J. Electron. Mater. 43, 2498 (2014).
F.S. Shieu, C.F. Chen, J.G. Sheen, and Z.C. Chang, Thin Solid Films 346, 125 (1999).
F. Shieu, Z. Chang, J. Sheen, and C. Chen, Intermetallics 8, 623 (2000).
L. Deillon, A. Hessler-Wyser, T. Hessler, and M. Rappaz, J. Micromech. Microeng. 25, 125016 (2015).
Y.-C. Chen and C.C. Lee, Thin Solid Films 283, 243 (1996).
Q. Guo, F. Yu, H. Chen, and M. Li, J. Mater. Sci. Mater. Electron. 29, 3014 (2018).
J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 58, 3429 (2010).
S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013).
K. Chu, Y. Sohn, and C. Moon, Scr. Mater. 109, 113 (2015).
H.P.R. Frederikse, R.J. Fields, and A. Feldman, J. Appl. Phys. 72, 2879 (1992).
T. Suni, H. Xu, V. Vuorinen, H. Heikkinen, S. Vahanen, A. Jaakkola, P. Monnoyer, and M. Paulasto-Krockel, in Microelectronics and Packaging Conference EMPC (2013), pp. 1–5.
T.A. Tollefsen, A. Larsson, O.M. Lövvik, and K. Aasmundtveit, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 43, 397 (2012).
H. Xu, A. Rautiainen, V. Vuorinen, E. Österlund, T. Suni, H. Heikkinen, P. Monnoyer, and M. Paulasto-KrÖckel, in 5th Electronics System-Integration Technology Conference, ESTC (2014).
H. Xu, T. Suni, V. Vuorinen, J. Li, H. Heikkinen, P. Monnoyer, and M. Paulasto-Kröckel, Adv. Manuf. 1, 226 (2013).
K. E. Aasmundtveit, T.T. Luu, H.V. Nguyen, R. Johannessen, N. Hoivik, and K. Wang, in Electronics System-Integration Technology Conference (ESTC) (2010), pp. 0–5.
S. Marauska, M. Claus, T. Lisec, and B. Wagner, Microsyst. Technol. 19, 1119 (2013).
T.A. Tollefsen, O.M. Løvvik, K. Aasmundtveit, and A. Larsson, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 2914 (2013).
T.A. Tollefsen, A. Larsson, M.M. Visser Taklo, A. Neels, X. Maeder, K. Høydalsvik, D.A.G.W. Breiby, and K. Aasmundtveit, Metall Mater Trans B 44, 406 (2013).
A. Hilton and D.S. Temple, Sensors 16, 1 (2016).
P. Ramm, J. Ji, Q. Lu, and M.M.V. Taklo, Handbook of Wafer Bonding (New York: Wiley, 2012).
M. Brincker, S. Söhl, R. Eisele, and V.N. Popok, Microelectron. Reliab. 76, 378 (2017).
C.T. Ko and K.N. Chen, Microelectron. Reliab. 50, 481 (2010).
H. Liu, G. Salomonsen, K. Wang, K.E. Aasmundtveit, and N. Hoivik, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1350 (2011).
T.T. Luu, A. Duan, K.E. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 42, 3582 (2013).
W.L. Chiu, C.M. Liu, Y.S. Haung, and C. Chen, Mater. Lett. 164, 5 (2016).
F. Brem, C. Liu, and D. Raik, in 4th Electronic System-Integration Technology Conference (ESTC) (2012).
B.H. Kwak, M.H. Jeong, J.W. Kim, B. Lee, H.J. Lee, and Y.B. Park, Microelectron. Eng. 89, 65 (2012).
H.J. Van De Wiel, A.S.B. Vardøy, G. Hayes, H. R. Fischer, A. Lapadatu, and M.M.V. Taklo, in 4th Electronic System-Integration Technology Conference (ESTC) (2012).
A. Rautiainen, H. Xu, E. Österlund, J. Li, V. Vuorinen, and M. Paulasto-KrÖckel, J. Electron. Mater. 44, 4533 (2015).
A. Rautiainen, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Today Proc. 2, 7093 (2017).
A. Rautiainen, V. Vuorinen, H. Heikkinen, and M. Paulasto-Kröckel, IEEE Trans. Compon. Packag. Manuf. Technol. 8, 169 (2018).
A. Rautiainen, G. Ross, V. Vuorinen, H. Dong, and M. Paulasto-Kröckel, J. Mater. Sci. Mater. Electron. 29, 15212 (2018).
K. Puttlitz and K. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (New York: Marcel Dekker, 2004).
S. Chen, S. Lin, and C. Yang, J. Electron. Mater. 35, 1 (2006).
X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi, J. Electron. Mater. 30, 1093 (2001).
W. Gierlotka, J. Electron. Mater. 41, 86 (2012).
S. Lin, T. Chung, S. Chen, and C. Chang, J. Mater. Res. 24, 2628 (2009).
J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Calphad 26, 273 (2002).
Acknowledgments
This project has received funding from the ECSEL Joint Undertaking (JU) under Grant agreement No 826588. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Belgium, Germany, Netherlands, Finland, Austria, France, Hungary, Latvia, Norway, Switzerland, Israel. The authors would also like to acknowledge the Innovation Funding Agency Business Finland (formerly Tekes) for financial support. The authors acknowledge the provision of facilities as well as technical support by Aalto University at OtaNano—Nanomicroscopy Center (Aalto-NMC).
Funding
Open access funding provided by Aalto University. This study was funded by ECSEL Joint Undertaking (JU) under Grant agreement No 826588.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Vuorinen, V., Dong, H., Ross, G. et al. Wafer Level Solid Liquid Interdiffusion Bonding: Formation and Evolution of Microstructures. J. Electron. Mater. 50, 818–824 (2021). https://doi.org/10.1007/s11664-020-08530-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-020-08530-y