Skip to main content
Log in

Ultralow Dielectric Constant and High Temperature Resistance Composites Based on Self-Crosslinking Polysulfone and Hollow Glass Beads

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, ultralow dielectric constant (ultralow-k) polysulfone (PSF) composites were prepared by adding hollow glass beads (HGB) modified with 1,3-divinyltetramethyldisiloxane (DVTM). The results indicated that the surface modification of HGB (m-HGB) effectively enhanced the interfacial compatibility between the inorganic fillers and PSF matrix. DSC and TGA measurements of the composite films were performed under a nitrogen atmosphere, and the results showed that the composite films possess high glass transition temperatures varying from 187 °C to 190 °C, and are thermally stable␣up to 445 °C. The mechanical properties of composite films with modified HGB fillers show a certain drop, but the values were still higher than 32 MPa. Furthermore, the obtained composite films show low dielectric constant, low dielectric loss, good permittivity-frequency stability and dielectric-temperature stability under 190 °C. Therefore, we shown an effective path to prepare composites with ultralow dielectric constant for use in high temperature resistant ultra large scale integration (ULSI) flexible insulation substrate field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Luo, K. Jin, C. He, J. Wang, J. Sun, F. He, J. Zhou, Y. Wang, and Q. Fang, Macromolecules 49, 7314 (2016).

    Article  CAS  Google Scholar 

  2. J. Li, Z. Zhang, T. Zhu, Z. Li, J. Wang, and Y. Cheng, Eur. Polym. J. 126, 109562 (2020).

    Article  CAS  Google Scholar 

  3. J. Wang, J. Zhou, K. Jin, L. Wang, J. Sun, and Q. Fang, Macromolecules 50, 9394 (2017).

    Article  CAS  Google Scholar 

  4. J. Chen, Y. Wang, Q. Yuan, X. Xu, Y. Niu, Q. Wang, and H. Wang, Nano Energy 54, 288 (2018).

    Article  CAS  Google Scholar 

  5. J. Dong, C. Yang, Y. Cheng, T. Wu, X. Zhao, and Q. Zhang, J. Mater. Chem. C 5, 2818 (2017).

    Article  CAS  Google Scholar 

  6. Z. Geng, M. Huo, J. Mu, S. Zhang, Y. Lu, J. Luan, P. Huo, Y. Du, and G. Wang, J. Mater. Chem. C 2, 1094 (2014).

    Article  CAS  Google Scholar 

  7. Y. Wang, Y. Tao, J. Zhou, J. Sun, and Q. Fang, ACS Sustain. Chem. Eng. 6, 9277 (2018).

    Article  CAS  Google Scholar 

  8. Y. Zhang, C. Zhao, J. Liu, and H. Na, Eur. Polym. J. 109, 110 (2018).

    Article  CAS  Google Scholar 

  9. L. Li, C. Liu, J. Zhu, and X. Chen, J. Eur. Ceram. Soc. 35, 1799 (2015).

    Article  CAS  Google Scholar 

  10. J. Wang, K. Jin, F. He, J. Sun, and Q. Fang, RSC Adv. 4, 40782 (2014).

    Article  CAS  Google Scholar 

  11. S. Saha, E. Mistri, D. Bera, and S. Banerjee, Mater. Chem. Phys. 152, 167 (2015).

    Article  CAS  Google Scholar 

  12. X. Li, P. Zhang, J. Dong, F. Gan, X. Zhao, and Q. Zhang, Compos. Part B: Eng. 177, 107401 (2019).

    Article  CAS  Google Scholar 

  13. Z. Pu, X. Zheng, and J. Zhong, Polym. Int. (2020). https://doi.org/10.1002/pi.5995.

    Article  Google Scholar 

  14. Y. Liu, C. Qian, L. Qu, Y. Wu, Y. Zhang, X. Wu, B. Zou, W. Chen, Z. Chen, Z. Chi, S. Liu, X. Chen, and J. Xu, Chem. Mater. 27, 6543 (2015).

    Article  CAS  Google Scholar 

  15. S. Park, F. Jin, and C. Lee, Mater. Sci. Eng. A Struct. 402, 335 (2005).

    Article  Google Scholar 

  16. Y. Zou, Y. Zhan, R. Zhao, and X. Liu, J. Mater. Sci.: Mater. Electron. 24, 1238 (2012).

    Google Scholar 

  17. X. Zheng, Z. Pu, L. Hu, Y. Tian, J. Xia, J. Cheng, and J. Zhong, J. Mater. Sci.: Mater. Electron. 30, 18168 (2019).

    CAS  Google Scholar 

  18. W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, and G. Zou, J. Magn. Magn. Mater. 36, 54 (2007).

    Article  Google Scholar 

  19. R. Wei, L. Tu, Y. You, C. Zhan, Y. Wang, and X. Liu, Polymer 161, 162 (2019).

    Article  CAS  Google Scholar 

  20. Z. Pu, L. Hu, Y. Tian, X. Zheng, J. Zhong, and X. Liu, J. Polym. Res. 25, 100 (2018).

    Article  Google Scholar 

  21. Z. Pu, X. Zheng, Y. Tian, L. Hu, and J. Zhong, Polymers 9, 596 (2017).

    Article  Google Scholar 

  22. H.T. Vo and F.G. Shi, Microelectron. J. 33, 409 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank for the Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (2018JXY04), Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province (2019CL04) and Major Project of Education Department in Sichuan (18ZA0346), Key science and technology planning project of Zigong (2019YYJC04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zejun Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zheng, X., He, G. et al. Ultralow Dielectric Constant and High Temperature Resistance Composites Based on Self-Crosslinking Polysulfone and Hollow Glass Beads. J. Electron. Mater. 49, 7581–7588 (2020). https://doi.org/10.1007/s11664-020-08491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08491-2

Keywords

Navigation