Skip to main content
Log in

High performance of hydroxylated BiFeO3/polystyrene composite films with enhanced dielectric constant and low dielectric loss

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In today’s world, technology for capacitor applications have rapidly increased the interest for the development of perfect composite materials (polymers and ceramics) with enhanced dielectric properties. In the present work, the composites with bismuth ferrite (BiFeO3, BFO) particles as functional fillers and polystyrene (PS) as polymer matrix was prepared by solution casting technique. To improve the dielectric properties of the composites, the surface of BFO particles were chemically treated with H2O2 to introduce –OH groups. The experimental results show that the hydroxylated BFO-PS composites enhanced the dielectric constant, AC electrical conductivity and the dielectric loss is relatively suppressed. The surface hydroxylated BFO particles were more homogeneously dispersed into the PS matrix and it was confirmed by scanning electron microscopy (SEM). Moreover, the ferroelectric properties of the composites were significantly improved and a maximum remnant polarization (2Pr = 1.442 μC/cm2) was obtained in the composite materials as compared with BFO-PS at the same volume fraction of fillers. The thermal properties of the resultant composite films were investigated by using differential scanning calorimetry (DSC) method. The demonstrated approach may provide a route for using the hydroxylated ceramics to enhance the dielectric properties in ceramic-based polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, J., Tian, G., Qi, S., Wu, Z., Wu, D.: Enhanced dielectric permittivity of a flexible three-phase polyimide–graphene–BaTiO3 composite material. Mater. Lett. 124, 117–119 (2014)

    CAS  Google Scholar 

  2. Luo, B., Wang, X., Wang, Y., Li, L.: Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A. 2, 510–519 (2014)

    CAS  Google Scholar 

  3. Dang, Z.M., Yuan, J.K., Yao, S.H., Liao, R.J.: Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)

    CAS  Google Scholar 

  4. Wang, Z., Wang, T., Wang, C., Xiao, Y., Jing, P., Cui, Y., Pu, Y.: Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba(Fe0.5Ta0.5)O3, for high energy-storage density at low electric field. ACS Appl. Mater. Interfaces. 9, 29130–29139 (2017)

    CAS  Google Scholar 

  5. Chi, Q., Wang, X., Zhang, C., Chen, Q., Chen, M., Zhang, T., Gao, L., Zhang, Y., Cui, Y., Wang, X., Lei, Q.: High energy storage density for poly(vinylidene fluoride) composites by introduced core–shell CaCu3Ti4O12@Al2O3 nanofibers. ACS. Sustain. Chem Eng. 6, 8641–8649 (2018)

    CAS  Google Scholar 

  6. Zhang, X., Ma, Y., Zhao, C., Yang, W.: High dielectric constant and low dielectric loss hybrid composites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 305, 531–538 (2014)

    CAS  Google Scholar 

  7. Wang, Q., Zhu, L.: Polymer composites for electrical energy storage. J. Polym. Sci. B Polym. Phys. 49, 1421–1429 (2011)

    CAS  Google Scholar 

  8. Hu, P., Shen, Y., Guan, Y., Zhang, X., Lin, Y., Zhang, Q., Nan, C.W.: Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24, 3172–3178 (2014)

    CAS  Google Scholar 

  9. Niu, Y., Yu, K., Bai, Y., Wang, H.: Enhanced dielectric performance of BaTiO3/PVDF composites prepared by modified process for energy storage applications. IEEE Trans. Ultrason. Eng. 62, 108–115 (2015)

    Google Scholar 

  10. Chen, G., Wang, X., Lin, J., Yang, W., Li, D., Ding, W., Li, H.: Improvement of dielectric performance and temperature-dependent behavior of Polyvinylidene fluoride composite with KTa0.5Nb0.5O3@Ag nanoparticles. J. Phys. Chem. C. 121, 15028–15035 (2017)

    CAS  Google Scholar 

  11. Pan, Z., Yao, L., Zhai, J., Wang, H., Shen, B.: Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Appl. Mater. Interfaces. 9, 14337–14346 (2017)

    CAS  Google Scholar 

  12. Chandarak, S., Ngamjarurojana, A., Srilomsak, S., Laoratanakul, P., Rujirawat, S., Yimnirun, R.: Dielectric properties of BaTiO3-modified BiFeO3 ceramics. Ferroelectr. 75, 75–81 (2011)

    Google Scholar 

  13. Bajpai, O.P., Kamdi, J.B., Selvakumar, M., Ram, S., Khastgir, D., Chattopadhyay, S.: Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polym Lett. 8, 669–681 (2014)

    CAS  Google Scholar 

  14. Lu, F.C., Yin, K., Fu, K.X., Wamg, Y.N., Ren, J., Xie, Q.: Enhanced magnetic and dielectric properties of Y doped bismuth ferrite nanofiber. Ceram. Int. 43, 16101–16106 (2017)

    CAS  Google Scholar 

  15. Wu, J., Wang, J., Xiao, D., Zhu, J.: Multiferroic and fatigue behavior of silicon-based bismuth ferrite sandwiched structure. J. Mater. Chem. 21(21), 7308–7313 (2011)

    CAS  Google Scholar 

  16. Dang, Z.M., Yu, Y.F., Xu, H.P., Bai, J.: Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos. Sci. Technol. 68, 171–177 (2008)

    CAS  Google Scholar 

  17. Dang, Z.M., Yuan, J.K., Zha, J.W., Zhou, T., Li, S.T., Hu, G.H.: Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)

    CAS  Google Scholar 

  18. Zhu, J., Li, W., Huo, X., Li, L., Li, Y., Luo, L., Zhu, Y.: An ultrahigh dielectric constant composite based on polyvinylidene fluoride and polyethylene glycol modified ferroferric oxide. J. Phys. D. Appl. Phys. 48, 355301–355305 (2015)

    Google Scholar 

  19. Su, Y., Gu, Y., Feng, S.: Composites of NBCTO/MWCNTs/PVDF with high dielectric permittivity and low dielectric loss. J. Mater. Sci. Mater. Electron. 29, 2416–2420 (2018)

    CAS  Google Scholar 

  20. Zhang, Y., Zhang, T., Liu, L., Chi, Q., Zhang, C., Chen, Q., Cui, Y., Wang, X., Lei, Q.: Sandwich-structured PVDF-based composite incorporated with hybrid Fe3O4@BN nanosheets for excellent dielectric properties and energy storage performance. J. Phys. Chem. C. 122, 1500–1512 (2018)

    CAS  Google Scholar 

  21. Li, J.Y., Zhang, L., Ducharme, S.: Electric energy density of dielectric nanocomposites. Appl. Phys. Lett. 90, 132901 (2007)

    Google Scholar 

  22. Das, R.N., Lauffer, J.M., Markovich, V.R.: Fabrication, integration and reliability of nanocomposite based embedded capacitors in microelectronics packaging. J. Mater. Chem. 18, 537–544 (2008)

    CAS  Google Scholar 

  23. Suematsu, K., Arimura, M., Uchiyama, N., Saita, S.: Transparent BaTiO3/PMMA nanocomposite films for display technologies: facile surface modification approach for BaTiO3Nanoparticles. ACS Appl Nano Mater. 1, 2430–2437 (2018)

    CAS  Google Scholar 

  24. Yan, W., Han, Z.J., Phung, B.T., Ostrikov, K.: Silica nanoparticles treated by cold atmospheric-pressure plasmas improve the dielectric performance of organic-inorganic nanocomposites. ACS Appl. Mater. Interfaces. 4, 2637–2642 (2012)

    CAS  Google Scholar 

  25. Deng, Y., Zhang, Y.J., Xiang, Y., Wang, G.S., Xu, H.B.: Bi2S3- BaTiO3/PVDF three-phase composites with high dielectric permittivity. J. Mater. Chem. 19, 2058–2061 (2009)

    CAS  Google Scholar 

  26. Xie, L.Y., Huang, X.Y., Wu, C., Jiang, P.K.: Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 21, 5897–5906 (2011)

    CAS  Google Scholar 

  27. Patra, A., Pal, A., Sen, S.: Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor. Ceram. Int. 44, 11196–11203 (2018)

    CAS  Google Scholar 

  28. Xu, W., Yang, G., Jin, L., Liu, J., Zhang, Y., Zhang, Z., Jiang, Z.: High-k polymer nanocomposites filled with hyper branched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS Appl. Mater. Interfaces. 10, 11233–11241 (2018)

    CAS  Google Scholar 

  29. Chi, Q., Gao, Z., Zhang, C., Zhang, T., Cui, Y., Wamg, X., Lei, Q.: Microstructures and energy storage property of sandwiched BZT-BCT@Fe3O4/polyimide composites. J. Mater. Sci. Mater. Electron. 30, 1–8 (2019)

    CAS  Google Scholar 

  30. Wu, G., Wang, Y., Wang, K., Feng, A.: The effect of modified AlN on thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv. 6, 102542–102548 (2016)

    CAS  Google Scholar 

  31. Tang, Y., Dong, W., Tang, L., Zhang, Y., Kong, J., Gu, J.: Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun. 8, 36–41 (2018)

    Google Scholar 

  32. Gu, J., Dong, W., Xu, S., Tang, Y., Ye, L., Kong, J.: Development of wave-transparent, light-weight composites combined with superior dielectric performance and desirable thermal stabilities. Compos. Sci. Technol. 144, 185–192 (2017)

    CAS  Google Scholar 

  33. Tang, L., Dang, J., He, M., Li, J., Kong, J., Tang, Y., Gu, J.: Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos. Sci. Technol. 169, 120–126 (2019)

    CAS  Google Scholar 

  34. Gu, J., Lv, Z., Wu, Y., Zhao, R., Tian, L., Zhang, Q.: Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique. Compos Part A Appl Sci Manuf. 79, 8–13 (2015)

    CAS  Google Scholar 

  35. Gu, J., Zhang, Q., Dang, J., Yin, C., Chen, S.: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites. J. Appl. Polym. Sci. 124, 132–137 (2012)

    CAS  Google Scholar 

  36. Tai, Q., Kan, Y., Chen, L., Xing, W., Hu, Y., Song, L.: Morphologies and thermal properties of flame-retardant polystyrene/a-zirconium phosphate nanocomposites. React. Funct. Polym. 70, 340–345 (2010)

    CAS  Google Scholar 

  37. Moharana, S., Mishra, M.K., Chopkar, M., Mahaling, R.N.: Enhanced dielectric properties of surface hydroxylated bismuth ferritee poly (vinylidene fluoride-co-hexafluoropropylene) composites for energy storage devices. J Sci Adv Mater Devices. 1, 461–467 (2016)

    Google Scholar 

  38. Yong, L., Xingyi, H., Zhiwei, H., Pingkai, J., Shengtao, L., Toshikatsu, T.: Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces. 3, 4396–4403 (2011)

    Google Scholar 

  39. Kim, P., Doss, N.M., Tillotson, J.P., Hotchkiss, P.J., Pan, M.J., Marder, S.R., Li, J., Calame, J.P., Perry, J.W.: High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. ACS Nano. 3, 2581–2592 (2009)

    CAS  Google Scholar 

  40. Yu, K., Bai, Y., Zhou, Y., Niu, Y., Wang, H.: Poly(vinylidene fluoride) polymer based composites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 particles. J. Appl. Phys. 113, 034105–034108 (2013)

    Google Scholar 

  41. Chen, S., Yao, K., Tay, F.E.H., Liow, C.L.: Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J. Appl. Phys. 102, 104108 (2007)

    Google Scholar 

  42. Calame, J.P.: Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications. J. Appl. Phys. 99, 084101 (2006)

    Google Scholar 

  43. Wang, Z., Wang, T., Xiao, Y., Nian, W., Chen, H.: High energy storage density of poly(vinylidene fiuoride) bulk nanocomposites at low electric field induced by giant dielectric constant ceramic nanopowders. Ceram. Int. 44, 181–185 (2018)

    Google Scholar 

  44. Love, G.R.: Energy-storage in ceramic dielectrics. J. Am. Ceram. Soc. 73, 323–328 (1990)

    CAS  Google Scholar 

  45. Dongrui, W., Meiyan, H., Zha, J.W., Zhao, J., Dang, Z.M., Cheng, Z.: Dielectric properties of polystyrene based composites filled with core-shell BaTiO3/polystyrene hybrid nanoparticles. IEEE Trans Dielectr Electr Insulation. 21, 1438–1445 (2014)

    Google Scholar 

  46. Yang, K., Huang, X., Huang, Y., Xie, L., Jiang, P.: Fluoro-polymer@BaTiO3 hybrid particles prepared via RAFT polymerization: toward ferroelectric polymer composites with high dielectric constant and low dielectric loss for energy storage application. Chem. Mater. 25, 2327–2338 (2013)

    CAS  Google Scholar 

  47. Zhang, L., Zhao, J., Huang, E., Zha, J.W., Dang, Z.M.: Preparation and dielectric properties of (Ba0.5Sr0.4Ca0.1)TiO3/polystyrene composites. J. Appl. Polym. Sci. 132, 41398 (2015)

    Google Scholar 

  48. Brosseau, C., Queffelec, P., Talbot, P.: Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites. J. Appl. Phys. 89, 4532 (2000)

    Google Scholar 

  49. Zhang, L., Bass, P., Cheng, Z.Y.: Physical aspects of 0-3 dielectric composites. J Adv Dielectr. 5, 1550012 (2015)

    Google Scholar 

  50. Gallone, G., Carpi, F., Rossi, D.D., Levita, G., Marchetti, A.: Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate. Mater. Sci. Eng. C. 27, 110–116 (2007)

    CAS  Google Scholar 

  51. Badapanda, T., Senthil, V., Anwar, S., Cavalcante, L.S., Batista, N.C., Longo, E.: Structural and dielectric properties of polyvinyl alcohol/barium zirconium titanate polymer ceramic composite. Curr. Appl. Phys. 13, 1490–1495 (2013)

    Google Scholar 

  52. Choudhury, A.: Dielectric and piezoelectric properties of polyetherimide/BaTiO3 nanocomposites. Mater. Chem. Phys. 121, 280–285 (2010)

    CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support obtained from the DST-FIST and UGC-DRS grant for the development of research work in the School of Chemistry, Sambalpur University, and project grant of DST Govt. of Odisha, India. One of the authors SM thanks UGC, New Delhi, for financial support through BSR Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh Mahaling.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharana, S., Mahaling, R.N. High performance of hydroxylated BiFeO3/polystyrene composite films with enhanced dielectric constant and low dielectric loss. J Aust Ceram Soc 56, 751–760 (2020). https://doi.org/10.1007/s41779-019-00393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00393-9

Keywords

Navigation