Skip to main content
Log in

Structural, Optical and Electrical Properties of CuIn0.7Ga0.3Se2 Ingot Prepared by Direct Melting

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CuIn0.7Ga0.3Se2 (CIGS) ingots were prepared by reaction of high-purity elements in stoichiometric proportions. The direct melting of elements was carried out using an original and low-cost process. The structural and morphological properties of the obtained material were investigated through x-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. To detect and identify the defect chemistry of the obtained crystal, we used cathodoluminescence measurements at different temperatures. Moreover, the electrical properties of the CIGS material have been deeply investigated in this work using impedance spectroscopy. The activation energy for the conduction process was estimated. The conductivity data were found to obey the universal law of Jonsher. AC conduction is attributed to the correlated barrier hopping model. In the Nyquist diagram, two microscopic contributions to the electrical conduction were well identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. BenMarai, J. BenBelgacem, Z. BenAyadi, K. Djessas, and S. Alaya, J. Alloys Compd. 658, 961 (2016).

    Article  CAS  Google Scholar 

  2. M. Nerat, Sol. Energy Mater. Sol. Cells 104, 152 (2012).

    Article  CAS  Google Scholar 

  3. I. Bouchama, K. Djessas, A. Bouloufa, and J.L. Gauffier, Phys. Status Solidi C 10, 129 (2013).

    Article  CAS  Google Scholar 

  4. O. Abounachit, H. Chehouani, and K. Djessas, Thin Solid Films 520, 4841 (2012).

    Article  CAS  Google Scholar 

  5. I.H. Khudayer, Energy Proc. 119, 507 (2017).

    Article  CAS  Google Scholar 

  6. H.H. Sheu, Y.T. Hsu, S.Y. Jian, and S.C. Liang, Vaccum. 131, 278 (2016).

    Article  CAS  Google Scholar 

  7. T. Kato, J. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, IEEE J. Photovolt. 9, 325 (2019).

    Article  Google Scholar 

  8. W. Fucheng, T. Fuling, X. Hongtao, L. Wenjiang, F. Yudong, and R. Zhiyuan, J. Semiconductors 35, 024011 (2014).

    Article  Google Scholar 

  9. J.T.S. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater. 2, 132 (1990).

    Article  CAS  Google Scholar 

  10. L. Essaleh, G. Marín, S.M. Wasim, S. Lahlali, and H. Chehouani, J. Alloys Compd. 688, 210 (2016).

    Article  CAS  Google Scholar 

  11. S. Lahlali, L. Essaleh, M. Belaqziz, H. Chehouani, A. Alimoussa, K. Djessas, B. Viallet, J.L. Gauffier, and S. Cayez, Phys. B Condens. Matter. 5026, 54 (2017).

    Article  Google Scholar 

  12. G. Marín, L. Essaleh, S. Amhil, S.M. Wasim, R. Bouferra, A. Zoubir, M.E. El Alaoui El Moujahid, D.P. Singh, and L. Vivas, Phys. B Condens. Matter. 593, 412283 (2020).

    Article  Google Scholar 

  13. A. Kaushal, S.M. Olhero, B. Singh, D.P. Fagg, I. Bdikin, and J.M.F. Ferreira, Ceram. Int. 40, 10593 (2014).

    Article  CAS  Google Scholar 

  14. S. Ahn, K. Kim, Y. Chun, and K. Yoon, Thin Solid Films 515, 4036 (2007).

    Article  CAS  Google Scholar 

  15. Y.H.A. Wang, X. Zhang, N. Bao, B. Lin, and A. Gupta, J. Am. Chem. Soc. 133, 11072 (2011).

    Article  CAS  Google Scholar 

  16. H. Miyake and K. Sugiyama, Jpn. J. Appl. Phys. 32, 156 (1993).

    Article  CAS  Google Scholar 

  17. G. Zahn and P. Paufler, Cryst. Res. Technol. 23, 499 (1988).

    Article  CAS  Google Scholar 

  18. F. Abou-Elfotouh, R.J. Matson, A.M. Bakry, and L.L. Kazmerski, Thin Solid Films 193, 769 (1990).

    Article  Google Scholar 

  19. O. Aissaoui, S. Mehdaoui, L. Bechiri, M. Benabdeslem, N. Benslim, A. Amar, A. Otmani, K. Djessas, and X. Portier, J. Lumin. 131, 109 (2011).

    Article  CAS  Google Scholar 

  20. M.W. Bouabdelli, F. Rogti, M. Maache, and A. Rabehi, Optik 216, 164948 (2020).

    Article  CAS  Google Scholar 

  21. Y.H. Cho, G.H. Gainer, A.J. Fisher, J.J. Song, S. Killer, U.K. Mishra, and S.P. Denbaars, Appl. Phys. Lett. 73, 1370 (1998).

    Article  CAS  Google Scholar 

  22. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Yanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  CAS  Google Scholar 

  23. T. Shekharam, V. Laxminarasimh Rao, G. Yellaiah, T. Mohan Kumar, and M. Nagabhushanam, J. Alloys Compd. 617, 952 (2014).

    Article  CAS  Google Scholar 

  24. S. Bhattacharya, R. Kundu, and A. Sundar Das, R. Mater. Sci. Eng. B 197, 51 (2015).

    Article  CAS  Google Scholar 

  25. G. Yellaiah and M. Nagabhushanam, J. Cryst. Growth 421, 33 (2015).

    Article  CAS  Google Scholar 

  26. A. El-ghandour, N.A. El-Ghamaz, M.M. El-Nahass, and H.M. Zeyada, Physica E 105, 13 (2019).

    Article  CAS  Google Scholar 

  27. L. Essaleh, H. Chehouani, M. Belaqziz, K. Dejessas, and J.L. Gauffier, Superlatice Micrstruct. 85, 806 (2015).

    Article  CAS  Google Scholar 

  28. L. Essaleh, G. Marin, S.M. Wasim, A. Alimoussa, and A. Bourial, Superlatice Microstruct. 92, 353 (2016).

    Article  CAS  Google Scholar 

  29. A.K. Jonscher, Chelsea Dielectric Press, London (1983)

  30. S.R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  CAS  Google Scholar 

  31. S. Rabaoui, H. Dahman, N. Ben Mansour, and L. El Mir, J. Mater. Sci.: Mater. Electron. 26, 1119 (2014).

    Google Scholar 

  32. L. Essaleh, S. Amhil, S.M. Wasim, G. Marín, E. Choukri, and L. Hajji, Physica E 99, 37 (2018).

    Article  CAS  Google Scholar 

  33. S. Lahlali, L. Essaleh, M. Belaqziz, H. Chehouani, K. Djessas, and B. Viallet, Phys. B 500, 161 (2016).

    Article  CAS  Google Scholar 

  34. S. Nasri, M. Megdiche, and M. Gargouri, Ceram. Int. 42, 943 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chehouani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahlali, S., Belaqziz, M., Amhil, S. et al. Structural, Optical and Electrical Properties of CuIn0.7Ga0.3Se2 Ingot Prepared by Direct Melting. J. Electron. Mater. 49, 7518–7525 (2020). https://doi.org/10.1007/s11664-020-08463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08463-6

Keywords

Navigation