Skip to main content

Advertisement

Log in

Enhancing the Photovoltaic Performance of Solid-State Dye-Sensitized Solar Cells with Composite Materials and Luminescent Down-Shifting

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells produce saturation of electrons and holes when exposed to high-intensity UV photons. These photon energies do not match the bandgap of the semiconductor materials, which not only degrades the dye and electrolyte but also disrupts the electron kinetics. In this work, graphene oxide (GO) was incorporated into TiO2 to form a composite photoanode structure. The results indicated that a composite photoanode based on GO/TiO2 enhanced the power conversion efficiency of a solid-state dye-sensitized solar cell (ss-DSSC) by 62% compared to that of pure TiO2. This enhancement is attributed to the high conductivity of graphene oxide. Further improvement in device performance was obtained by plasmonic luminescent down-shifting (LDS), where the UV region of the solar spectrum is shifted hundreds of nanometers. The multifunctional LDS coating layer was fabricated with a composite of ZnSe quantum dots and Ag nanoparticles. The experimental results demonstrated the ability of LDS to absorb photons at wavelengths below 400 nm and re-emit them at longer wavelengths (above 400 nm), where the cell has better photovoltaic response. When compared to a bare ss-DSSC, the power conversion efficiency (PCE) is enhanced by 37.62% for cells with a Ag/ZnSe coating layer. Moreover, the LDS-coated device exhibits 16.45% increased photon-to-current conversion efficiency compared to the LDS-free device for wavelengths lower than 500 nm. The 240-h aging tests confirmed that the LDS-coated ss-DSSC retained ∼ 83% of its original PCE value. This potential LDS coating layer not only leads to excellent device stability but also improves the cell performance, which increases the market value of the ss-DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kakroo, K. Surana, and B. Bhattacharya, J. Electron. Mater. 3, 2197 (2020).

    Article  Google Scholar 

  2. S. Yun, Y. Qin, A.R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han, and A. Hagfeldt, Energy Environ. Sci. 3, 476 (2018).

    Article  Google Scholar 

  3. S.S. Sharma, S. Soni, and K. Sharma, Adv. Sci. Eng. Med. 10, 1051 (2018).

    Article  Google Scholar 

  4. K. Sharma, V. Sharma, and S.S. Sharma, Nanoscale Res. Lett. 1, 381 (2018).

    Article  Google Scholar 

  5. Y.M. Lee, D.I. Kim, K.H. Hwang, S.H. Nam, and J.H. Boo, Electron. Mater. Lett. 4, 512 (2016).

    Article  Google Scholar 

  6. A.U. Rehman, F. Aslam, and H.A. Khan, Am. J. Eng. Appl. Sci. 4, 387 (2014).

    Article  Google Scholar 

  7. S.S. Sharma, V. Sharma, R.S. Rajaura, P.K. Sharma, S. Srivastva, M. Singh, and Y.K. Vijay in AIP Conference Proceedings, vol. 1591(1) (2014), p. 646.

  8. H. Ullah, A.D. Khan, M. Noman, and A.U. Rehman, Plasmonics 2, 591 (2018).

    Article  Google Scholar 

  9. S.S. Sharma, V. Sharma, R. Singh, S. Srivastva, P. Sharma, and Y.K. Vijay, Adv. Electrochem. 2, 128 (2013).

    Article  Google Scholar 

  10. V. Kumar, S.P. Tiwari, O.M. Ntwaeaborwa, and H.C. Swart, in Spectroscopy of Lanthanide Doped Oxide Materials, 1st edn. (Woodhead Publishing, Cambridge, 2020), p. 345.

  11. S.S. Sharma, K. Sharma, and V. Sharma, in AIP Conference Proceedings, vol. 1728(1) (2016), p. 020515.

  12. M.S. Ahmad, A.K. Pandey, and N.A. Rahim, Renew. Sustain. Energy Rev. 77, 89 (2017).

    Article  Google Scholar 

  13. D. Bari, N. Wrachien, G. Meneghesso, C. Andrea, R. Tagliaferro, T.M. Brown, A. Reale, and A. Di Carlo, in IEEE International Reliability Physics Symposium (2013), p. 4.

  14. F. Bella, G. Leftheriotis, G. Griffini, G. Syrrokostas, S. Turri, M. Grätzel, and C. Gerbaldi, Adv. Funct. Mater. 7, 1127 (2016).

    Article  Google Scholar 

  15. S.K. Shah, M. Ishaq, S.A. Khattak, I. Ullah, K. Hayat, M. Khan, G. Khan, and L. Tabbasam, J. Electron. Mater. 1, 696 (2019).

    Article  Google Scholar 

  16. M. Chevrier, H. Hawashin, S. Richeter, A. Mehdi, M. Surin, R. Lazzaroni, P. Dubois, B. Ratier, J. Bouclé, and S. Clément, Synth. Met. 226, 157 (2017).

    Article  CAS  Google Scholar 

  17. K. Mohan, A. Bora, R.S. Roy, B.C. Nath, and S.K. Dolui, Sol. Energy 186, 360 (2019).

    Article  CAS  Google Scholar 

  18. J. Zhang, M. Freitag, A. Hagfeldt, and G. Boschloo, Mol. Devices Sol. Energy Convers. Storage (2018). https://doi.org/10.1007/978-981-10-5924-7_4.

    Article  Google Scholar 

  19. C.F. Lima, E. Kohlrausch, M.A.Z. Vasconcellos, and M. Leite, Phys. Simul. Phot. Eng. Photovolt. Devices 11275, 112750 (2020).

    Google Scholar 

  20. B. Lee, J. He, R.P. Chang, and M.G. Kanatzidis, Nature 7399, 486 (2012).

    Google Scholar 

  21. D. Alonso-Álvarez, D. Ross, E. Klampaftis, K.R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B.S. Richards, Prog. Photovolt. Res. Appl. 23, 479 (2015).

    Article  Google Scholar 

  22. Y. Zhang, J. Lin, J. Wu, J. Zhang, S. Zhou, P. Chen, and R. Xu, J. Mater. Sci. Electron. 2, 1350 (2016).

    Article  Google Scholar 

  23. E. Klampaftis, D. Ross, S. Seyrling, A.N. Tiwari, and B.S. Richards, Sol. Energy Mater. Sol. Cells 101, 62 (2012).

    Article  CAS  Google Scholar 

  24. H.A. Ahmed, J. Walshe, M. Kennedy, T. Confrey, J. Doran, and S.J. McCormack, Adv. Energy Res. 1, 117 (2013).

    Article  Google Scholar 

  25. M. Kennedy, H. Ahmed, J. Doran, B. Norton, P. Bosch-Jimenez, M.D. Pirriera, E. Torralba-Calleja, D.G. Tauste, L. Aubouy, S. Daren, and F. Solomon-Tsvetkov, Phys. Status Solidi (A) 1, 203 (2015).

    Article  Google Scholar 

  26. M.N. Huang, Y.Y. Ma, F. Xiao, and Q.Y. Zhang, Spectrochim. Acta A 120, 55 (2014).

    Article  CAS  Google Scholar 

  27. M.N. Huang, Y.Y. Ma, X.Y. Huang, S. Ye, and Q.Y. Zhang, Spectrochim. Acta A 115, 767 (2013).

    Article  CAS  Google Scholar 

  28. R. Jenkins, B. Aldwell, S. Yin, S. Chandra, G. Morgan, and R. Lupoi, Opt. Laser Technol. 115, 251 (2019).

    Article  CAS  Google Scholar 

  29. Z. Hosseini and T. Ghanbari, RSC Adv. 55, 31502 (2018).

    Article  Google Scholar 

  30. M. Rafiee, S. Chandra, H. Ahmed, K. Barnham, and S.J. McCormack, Renew. Energy Sustain. Build. (2020). https://doi.org/10.1007/978-3-030-18488-9_72.

    Article  Google Scholar 

  31. A. Aboulfotouh, M. Fikry, M. Mohamed, M. Omar, H. Rady, and Y. Elbashar, Opt. Quantum Electron. 2, 115 (2018).

    Article  Google Scholar 

  32. P. Wu, X. Hou, J.J. Xu, and H.Y. Chen, Nanoscale 16, 8427 (2016).

    Article  Google Scholar 

  33. S. Chandra, H. Ahmed, J. Doran, & S.J. McCormack, in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VI (International Society for Optics and Photonics, San Francisco, 2017), p. 100990.

  34. H. Ahmed, A.S.J. Doran, and S.J. McCormack, Plasmonic Interaction in Enhanced Luminescent Down-Shifting Layers for Photovoltaic Devices (Nova Science Publishers, 2017). http://www.tara.tcd.ie/bitstream/handle/2262/91230/Hind%20Ahmed_%20NOVA%20Book%20Chapter.pdf?sequence=1. Accessed Jan 2017.

  35. H. Ahmed, J. Doran, and S.J. McCormack, Sol. Energy 126, 146 (2016).

    Article  CAS  Google Scholar 

  36. R. Reisfeld, Opt. Mater. 9, 850 (2010).

    Article  Google Scholar 

  37. S. Chandra, J. Doran, S.J. McCormack, M. Kennedy, and A.J. Chatten, Solar Energy Mater. Sol. Cells 98, 385 (2012).

    Article  CAS  Google Scholar 

  38. B. Wang, B. Li, T. Shen, M. Li, and J. Tian, J. Energy Chem. 3, 736 (2018).

    Article  Google Scholar 

  39. N. Chouhan, Silver Nanopart. Fabr. Character Appl. (2018). https://doi.org/10.5772/intechopen.75611.

    Article  Google Scholar 

  40. Y. Zang, J. Yin, X. He, C. Yue, Z. Wu, J. Li, and J. Kang, Mater. Chem. A 21, 7747 (2014).

    Article  Google Scholar 

  41. N. Yang, J. Zhai, D. Wang, Y. Chen, and J. Jiang, ACS Nano 2, 887 (2010).

    Article  Google Scholar 

  42. M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 2, 145 (2003).

    Article  Google Scholar 

  43. Y.B. Tang, C.S. Lee, Z.H. Chen, G.D. Yuan, Z.H. Kang, L.B. Luo, H.S. Song, Y. Liu, Z.B. He, W.J. Zhang, and I. Bello, Nano Lett. 4, 1374 (2010).

    Google Scholar 

  44. P.M. Sommeling, M. Späth, H.J.P. Smit, N.J. Bakker, and J.M. Kroon, J. Photochem. Photobiol. A Chem. 3, 137 (2004).

    Article  Google Scholar 

  45. N. Chander, A.F. Khan, P.S. Chandrasekhar, E. Thouti, S.K. Swami, V. Dutta, and V.K. Komarala, Appl. Phys. Lett. 3, 033904 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees Ur Rehman.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A.U., Aslam, M., Khan, M. et al. Enhancing the Photovoltaic Performance of Solid-State Dye-Sensitized Solar Cells with Composite Materials and Luminescent Down-Shifting. J. Electron. Mater. 49, 6292–6299 (2020). https://doi.org/10.1007/s11664-020-08400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08400-7

Keywords

Navigation