Skip to main content
Log in

Novel Multi-Broadband Plasmonic Absorber Based on a Metal-Dielectric-Metal Square Ring Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We numerically analyzed a simple and novel design of multi-broadband plasmonic absorber which consists of a planar array of thin gold square ring structures on dielectric/metal substrate. Several optimized designs of the metasurface screen are proposed to absorb wide range of the electromagnetic spectrum, which includes single ring, single split ring, ring inside split ring, and dual split ring resonators, respectively. Moreover, simulation results demonstrate that by changing the dimensions of the metasurface screen and the middle dielectric spacer, multi-broadband absorption resonant peaks having absorption bandwidth of about 570 nm above 50% absorption and bandwidth of about 93 nm above 90% absorption are obtained in the visible and near-infrared regime. The proposed design has potential applications in imaging and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu P, Wu J, Ashalley E, Govorov A, Wang Z (2016) Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J Phys D Appl Phys 49:365101

    Article  Google Scholar 

  2. Landy N, Bingham C, Tyler T, Jokerst N, Smith D, Padilla W (2009) Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B 79:125104

    Article  Google Scholar 

  3. Khan AD, Miano G (2013) Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8:1429–1437

    Article  CAS  Google Scholar 

  4. Khan AD, Khan SD, Khan R, Ahmad N, Ali A, Khalil A, Khan FA (2014) Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 9:1091–1102

    Article  CAS  Google Scholar 

  5. Khan AD (2016) Enhanced plasmonic Fano-like resonances in multilayered nanoellipsoid. Applied Physics A 122:1–7

    Google Scholar 

  6. Khan AD and Amin M (2016) Tunable salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics 1–6

  7. Shi C, Zang X, Ji X, Chen L, Cai B, and Zhu Y (2014) Ultra-broadband terahertz perfect absorber based on multi-frequency destructive interference and grating diffraction. arXiv preprint arXiv 1409.6103

  8. Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8:1023–1034

    Article  CAS  Google Scholar 

  9. Aslam MI and Ali SM (2013) A wideband metamaterial absorber for solar cell applications. in Proceedings of International Conference on Energy and Sustainability 113–116

  10. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517

    Article  Google Scholar 

  11. Ding F, Jin Y, Li B, Cheng H, Mo L, He S (2014) Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photonics Rev 8:946–953

    Article  Google Scholar 

  12. Hu D, Wang H-y, Zhu Q-f (2016) Design of six-band terahertz perfect absorber using a simple U-shaped closed-ring resonator. IEEE Photonics Journal 8:1–8

    Google Scholar 

  13. He X, Yan S, Lu G, Zhang Q, Wu F, Jiang J (2015) An ultra-broadband polarization-independent perfect absorber for the solar spectrum. RSC Adv 5:61955–61959

    Article  CAS  Google Scholar 

  14. Tao H, Bingham C, Pilon D, Fan K, Strikwerda A, Shrekenhamer D, Padilla W, Zhang X, Averitt R (2010) A dual band terahertz metamaterial absorber. J Phys D Appl Phys 43:225102

    Article  Google Scholar 

  15. Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  CAS  Google Scholar 

  16. Wang B-X, Zhai X, Wang G, Huang W, Wang L (2015) Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Journal 7:1–8

    Google Scholar 

  17. Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20:13311–13319

    Article  Google Scholar 

  18. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  19. Cong J, Zheng G, Yun B, Zhou Z (2015) Simultaneous enhancement of bandwidth and group index of slow light via metamaterial induced transparency with double bright resonators, Selected Topics in Quantum Electronics. IEEE Journal 21:1–6

    Article  CAS  Google Scholar 

  20. Li G, Chen X, Li O, Shao C, Jiang Y, Huang L, Ni B, Hu W, Lu W (2012) A novel plasmonic resonance sensor based on an infrared perfect absorber. J Phys D Appl Phys 45:205102

    Article  Google Scholar 

  21. Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9:1265–1270

    Article  CAS  Google Scholar 

  22. Mandal P (2016) Plasmonic perfect absorber for refractive index sensing and SERS. Plasmonics 11:223–229

    Article  CAS  Google Scholar 

  23. Mulla B and Sabah C (2016) Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 1–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Daud Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, H., Khan, A.D., Noman, M. et al. Novel Multi-Broadband Plasmonic Absorber Based on a Metal-Dielectric-Metal Square Ring Array. Plasmonics 13, 591–597 (2018). https://doi.org/10.1007/s11468-017-0549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0549-6

Keywords

Navigation