Skip to main content
Log in

Tin Sulfide Flower-Like Structure as High-Performance Near-Infrared Photodetector

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A pH reaction solution adjustment approach is proposed to improve the performance of a flower-like structure-based SnS photodetector. A relatively low-cost chemical bath deposition was adopted to control the growth of a SnS flower-like structure onto a flexible polyethylene terephthalate substrate. The photoresponse characteristics were measured and analyzed using near-infrared (NIR) illumination (850 nm) at various bias voltages. The presented photodetector manifested excellent stability and photoresponse characteristics, including sensitivity (304), the rise time (0.11 s) and the decay time (0.15 s) at 3 V of bias voltage. Based on its good performance, flexibility, low cost, and non-toxic nature, the fabricated flexible photodetector is very promising in the range of NIR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, W. Song, B. Liu, G. Chen, D. Chen, C. Zhou, and G. Shen, Adv. Funct. Mater. 23, 1202 (2013).

    CAS  Google Scholar 

  2. Z. Deng, D. Han, and Y. Liu, Nanoscale 3, 4346 (2011).

    CAS  Google Scholar 

  3. X. Zhou, L. Gan, Q. Zhang, X. Xiong, H. Li, Z. Zhong, J. Han, and T. Zhai, J. Mater. Chem. C 4, 2111 (2016).

    CAS  Google Scholar 

  4. E.C. Greyson, J.E. Barton, and T.W. Odom, Small 2, 368 (2006).

    CAS  Google Scholar 

  5. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011).

    CAS  Google Scholar 

  6. A. Tanu sevski and D. Poelman, Sol. Energy Mater. Sol. Cell. 80, 297 (2003).

    CAS  Google Scholar 

  7. G.H. Yue, D.L. Peng, P.X. Yan, L.S. Wang, W. Wang, and X.H. Luo, J. Alloys Compd. 468, 254 (2009).

    CAS  Google Scholar 

  8. M. Patel, I. Mukhopadhyay, and A. Ray, Opt. Mater. 35, 1693 (2013).

    CAS  Google Scholar 

  9. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, and T. Buonassisi, Thin Solid Films 519, 7421 (2011).

    CAS  Google Scholar 

  10. S. Cheng and G. Conibeer, Thin Solid Films 520, 837 (2011).

    CAS  Google Scholar 

  11. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Surf. Sci. 257, 1189 (2010).

    CAS  Google Scholar 

  12. M.S. Mahdi, K. Ibrahim, A. Hmood, N.M. Ahmed, and F.I. Mustafa, J. Electron. Mater. 46, 4227 (2017).

    CAS  Google Scholar 

  13. F. Gode, E. Guneri, and O. Baglayan, Appl. Surf. Sci. 318, 227 (2014).

    CAS  Google Scholar 

  14. Y. Jayasree, U. Chalapathi, and V.S. Raja, Thin Solid Films 537, 149 (2013).

    CAS  Google Scholar 

  15. D. Avellaneda, G. Delgado, M.T.S. Nair, and P.K. Nair, Thin Solid Films 515, 5771 (2007).

    CAS  Google Scholar 

  16. T.H. Sajeesh, A.S. Cherian, and C.S. Kartha, Energy Procedia 15, 325 (2012).

    CAS  Google Scholar 

  17. M.S. Mahdi, A. Hmood, K. Ibrahim, N.M. Ahmed, and M. Bououdina, Superlattice. Microst. 128, 170 (2019).

    CAS  Google Scholar 

  18. M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Hmood, S.A. Azzez, F.I. Mustafa, and M. Bououdina, Mater. Lett. 210, 279 (2018).

    CAS  Google Scholar 

  19. U. Chalapathi, B. Poornaprakash, and S.-H. Park, Sol. Energy 139, 238 (2016).

    CAS  Google Scholar 

  20. P.K. Nair, A.R. Garcia-Angelmo, and M.T.S. Nair, Phys. Status Solidi Appl. Mater. Sci. 213, 170 (2016).

    CAS  Google Scholar 

  21. U. Chalapathi, B. Poornaprakash, and S.-H. Park, J. Alloys Compd. 689, 938 (2016).

    CAS  Google Scholar 

  22. M.S. Mahdi, K. Ibrahim, A. Hmood, N.M. Ahmed, F.I. Mustafa, and S.A. Azzez, Mater. Lett. 200, 10 (2017).

    CAS  Google Scholar 

  23. M.S. Mahdi, K. Ibrahim, N.M. Ahmed, A. Kadhim, S.A. Azzez, and M. Bououdina, Mater. Res. Express 4, 105033 (2017).

    Google Scholar 

  24. T.H. Sajeesh, C.S. Kartha, C. Sanjeeviraja, T. Abe, Y. Kashiwaba, and K.P. Vijayakumar, J. Phys. D 43, 445102 (2010).

    Google Scholar 

  25. Y. Fang and J. Huang, Adv. Mater. 27, 2804 (2015).

    CAS  Google Scholar 

  26. M. Cao, C. Wu, K. Yao, J. Jing, J. Huang, J. Zhang, J. Lai, O. Ali, L. Wang, and Y. Shen, Mater. Res. Bull. 104, 244 (2018).

    CAS  Google Scholar 

  27. A. Antony, K.V. Murali, R. Manoj, and M.K. Jayaraj, Mater. Chem. Phys. 90, 106 (2005).

    CAS  Google Scholar 

  28. M.T.S. Nair and P.K. Nail, Semicond. Sci. Technol. 6, 132 (1991).

    CAS  Google Scholar 

  29. K.T.R. Reddy and P.P. Reddy, Mater. Lett. 56, 108 (2002).

    Google Scholar 

  30. M. Devika, N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K.R. Gunasekhar, E.S.R. Gopal, and K.T. Ramakrishna Reddy, J. Electrochem. Soc. 154, H67 (2007).

    CAS  Google Scholar 

  31. Z. Raza Khan, M. Zulfequar, and M. Shahid Khan, Chalcogenide Lett. 7, 431 (2010).

    Google Scholar 

  32. A.U. Ubale, A.R. Junghare, N.A. Wadibhasme, A.S. Daryapurkar, R.B. Mankar, and V.S. Sangawar, Turk. J. Phys. 31, 279 (2007).

    CAS  Google Scholar 

  33. N. Khedmi, M. Ben Rabeh, and M. Kanzari, Energy Procedia 44, 61 (2014).

    CAS  Google Scholar 

  34. M. Vasudeva Reddy, G. Sreedevi, C. Park, R.W. Miles, and K.T. Ramakrishna Reddy, Curr. Appl. Phys. 15, 588 (2015).

    Google Scholar 

  35. J. Chao, Z. Wang, X. Xu, Q. Xiang, W. Song, G. Chen, J. Hu, and D. Chen, RSC Adv. 3, 2746 (2013).

    CAS  Google Scholar 

  36. N.R. Mathews, H.B.M. Anaya, M.A. Cortes-Jacome, C. Angeles-Chavez, and J.A. Toledo-Antonio, J. Electrochem. Soc. 157, H337 (2010).

    CAS  Google Scholar 

  37. P.M. Nikolic, L. Miljkovic, P. Mihajlovic, and P. Lavrencic, J. Phys. C: Solid State Phys. 10, L289 (1977).

    CAS  Google Scholar 

  38. H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, and M. Cardona, Phys. Rev. B 15, 2177 (1977).

    CAS  Google Scholar 

  39. A. Supee, Y. Tanaka, and M. Ichimura, Mater. Sci. Semicond. Proc. 38, 290 (2015).

    CAS  Google Scholar 

  40. M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, and A. Ray, Nanoscale 8, 2293 (2016).

    CAS  Google Scholar 

  41. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, J.C. Li, and T. Yu, Nanotechnology 20, 85203 (2009).

    CAS  Google Scholar 

  42. R.N. Koteeswara, M. Devika, and K.R. Gunasekhar, Thin Solid Films 558, 326 (2014).

    Google Scholar 

  43. N. Satoa, M. Ichimuraa, E. Araia, and Y. Yamazaki, Sol. Energy Mater. Sol. Cell. 85, 153 (2005).

    Google Scholar 

  44. T. Srinivasa and M. Kumar, RSC Adv. 6, 95680 (2016).

    Google Scholar 

  45. P. Kumar, N. Saxena, S. Dewan, F. Singhb, and V. Gupt, RSC Adv. 6, 3642 (2016).

    CAS  Google Scholar 

  46. R. Li, Y. Zhou, M. Sun, Z. Gong, Y. Guo, W. Fayu, W. Li, and W. Ding, Coatings 9, 591 (2019).

    Google Scholar 

  47. E. Conwell and V.F. Weisskopf, Phys. Rev. 77, 388 (1950).

    Google Scholar 

  48. C. Hillsum, Electron. Lett. 10, 259 (1974).

    Google Scholar 

  49. Z. Zang, A. Nakamura, and J. Temmyo, Opt. Express 21, 11448 (2013).

    CAS  Google Scholar 

  50. F. Lu, J. Yang, R. Li, N. Huo, Y. Li, Z. Wei, and J.J. Li, Mater. Chem. C 3, 1397 (2015).

    CAS  Google Scholar 

  51. J. Wang, G. Lian, Z. Xu, C. Fu, Z. Lin, L. Li, Q. Wang, D. Cui, C.-P. Wong, and A.C.S. Appl, Mater. Interfaces 8, 9545 (2016).

    CAS  Google Scholar 

  52. S. Dias and S.B. Krupanidhi, AIP Adv. 6, 025217 (2016).

    Google Scholar 

  53. L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, and X. Fang, Adv. Mater. 24, 2305 (2012).

    CAS  Google Scholar 

  54. G. Chen, Yu Yongqiang, K. Zheng, T. Ding, W. Wang, Y. Jiang, and Q. Yang, Small 11, 2848 (2015).

    CAS  Google Scholar 

  55. R. Amiruddin and M.C. Santhosh Kumar, Curr. Appl. Phys. 16, 1052 (2016).

    Google Scholar 

  56. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).

    CAS  Google Scholar 

  57. H. Zhang, X. Zhang, C. Liu, S.T. Lee, and J. Jie, ACS Nano 5, 5113 (2016).

    Google Scholar 

  58. D.-H. Xie, F.-F. Wang, H. Lü, M.-Y. Du, and W.-J. Xu, Chin. Phys. B 22, 58103 (2013).

    Google Scholar 

  59. W.-W. Xiong, J.-Q. Chen, X.-C. Wu, and J.-J. Zhu, J. Mater. Chem. C 3, 1929 (2015).

    CAS  Google Scholar 

  60. Y. Tao, J. Chen, J. Wu, Y. Wu, and X. Wu, J. Alloys Compd. 658, 6 (2016).

    CAS  Google Scholar 

  61. H. Kind, H. Yan, B.L. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nano-Optoelectronics Research Laboratory at Universiti Sains, Malaysia, and the Ministry of Science and Technology, Iraq, for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Mahdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, M.S., Latif, K.H., Jabor, A.A. et al. Tin Sulfide Flower-Like Structure as High-Performance Near-Infrared Photodetector. J. Electron. Mater. 49, 5824–5830 (2020). https://doi.org/10.1007/s11664-020-08367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08367-5

Keywords

Navigation