Skip to main content
Log in

Flexible ultraviolet photodetector based on flower-like ZnO/PEDOT:PSS nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An excellent flexible nanocomposites films, which consists of flower-like ZnO and conducting polymer (poly (3,4ethelyenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) on flexible transparent plastic sheets were prepared and reported its unusual negative UV photoresponse, that is increasing resistance in nanocomposite under UV illumination. Nanocomposite (NC) films with varying ZnO loading are used to study the UV photoresponse. Negative photoresponse decreases after a critical concentration of ZnO in NC. Different ZnO concentration NC films were prepared using a simple drop-casting method on flexible transparent plastic sheets. Well-arranged flower-like structured ZnO were prepared by a wet chemical method. A structural investigation based on X-ray diffraction pattern shows the small variations in structural parameters such as lattice constant, crystalline size, microstrain, and dislocation density when ZnO mix with polymer. UV spectroscopy reveals the bandgap variation due to increasing ZnO loading in NC. The photoluminescence study of ZnO gives a broad emission ranging from 485 to 630 nm under an excitation wavelength of 330 nm. Raman spectroscopic and FT-IR studies were also done to know the vibrational properties of prepared samples. Thermogravimetric analysis of prepared NC shows the thermal stability of NC increases with increasing ZnO concentration in NC. Photoresponsivity of NC films was studied by varying ZnO concentration in NC towards UV radiation. Negative photoresponse is changing with ZnO concentration in fixed PEDOT:PSS concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Teng, K. Hu, W. Ouyang, and X. Fang, 1706262, 1 (2018)

  2. S. Bhandari, D. Mondal, 913 (2019).

  3. H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (2000)

    Article  ADS  Google Scholar 

  4. H.-M. Kim, T.W. Kang, K.S. Chung, Adv. Mater. 15, 567 (2003)

    Article  Google Scholar 

  5. S.E. Mancebo, S.Q. Wang, 29, 265 (2014).

  6. B. Leckner, 20, 143 (1978).

  7. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    Article  ADS  Google Scholar 

  8. Y. Li, F.D. Valle, M. Simonnet, I. Yamada, J.J. Delaunay, Nanotechnology 20, 045501 (2009)

    Article  ADS  Google Scholar 

  9. Y. Han, G. Wu, H. Li, M. Wang, H. Chen, Nanotechnology 21, 185708 (2010)

    Article  ADS  Google Scholar 

  10. H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, Q. Xu, Appl. Phys. Lett. 90, 3 (2007)

    Google Scholar 

  11. C. Zhang, Y. Xie, H. Deng, T. Tumlin, C. Zhang, J. Su, 1 (2017).

  12. P. Zhou, C. Chen, X. Wang, B. Hu, H. San, Sens. Actuators A. Phys. 271, 389 (2017)

    Article  Google Scholar 

  13. L. Zheng, P. Yu, K. Hu, F. Teng, H. Chen, X. Fang, J. Accepted, (2016).

  14. I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B Condens. Matter Mater. Phys. 69, 1 (2004)

  15. V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett. 85, 5971 (2004)

    Article  ADS  Google Scholar 

  16. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho, H. Morko̧, J. Appl. Phys. 98, 1 (2005).

  17. Z.L. Wang, Mater. Sci. Eng. R Rep. 64, 33 (2009)

    Article  Google Scholar 

  18. Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, Z. L. Wang, 1 (2009)

  19. Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z. L. Wang (2012)

  20. T. Bora, D. Zoepfl, J. Dutta, Nat. Publ. Gr. 6 (2016)

  21. B. N. Kouklin, 2190 (2008).

  22. J. M. Chem, R. R. Prabhakar, N. Mathews, K. B. Jinesh, K. R. G. Karthik, S. Pramana, B. Varghese, H. Sow, S. Mhaisalkar, 9678 (2012).

  23. F.C. Chen, J.L. Wu, C.L. Lee, Y. Hong, C.H. Kuo, M.H. Huang, Appl. Phys. Lett. 95, 1 (2009)

    Google Scholar 

  24. H.M. Thirimanne, K.D.G.I. Jayawardena, A.J. Parnell, R.M.I. Bandara, A. Karalasingam, S. Pani, J.E. Huerdler, D.G. Lidzey, S.F. Tedde, A. Nisbet, C.A. Mills, S.R.P. Silva, Nat. Commun. 9, 2926 (2018)

    Article  ADS  Google Scholar 

  25. H. Zhang, J. Feng, J. Wang, M. Zhang, Mater. Lett. 61, 5202 (2007)

    Article  Google Scholar 

  26. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  27. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  28. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    Article  ADS  Google Scholar 

  29. N. Illyaskutty, S. Sreedhar, G.S. Kumar, H. Kohler, M. Schwotzer, C. Natzeck, V.P.M. Pillai, Nanoscale 6, 13882 (2014)

    Article  ADS  Google Scholar 

  30. A. Gupta, O.P. Pandey, Sol. Energy 183, 398 (2019)

    Article  ADS  Google Scholar 

  31. R. Khokhra, B. Bharti, H.N. Lee, R. Kumar, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  32. A. K. Bhunia, P. K. Samanta, T. Kamilya, S. Saha, 20, 205 (2015)

  33. N.G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R.J. Potter, G. Dearden, K.G. Watkins, P. French, M. Sharp, Chem. Phys. Lett. 484, 283 (2010)

    Article  ADS  Google Scholar 

  34. L. Li, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Chem. Commun. 2, 3125 (2006)

    Article  Google Scholar 

  35. J. Yoo, J. Pyo, J.H. Je, Nanoscale 6, 3557 (2014)

    Article  ADS  Google Scholar 

  36. A. Sharma, B. Bhattacharyya, A.K. Srivastava, T.D. Senguttuvan, S. Husale, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  37. M. Belhaj, C. Dridi, R. Yatskiv, J. Grym, Org. Electron. 77, 105545 (2020)

    Article  Google Scholar 

  38. M.M. De Kok, M. Buechel, S.I.E. Vulto, P. Van De Weyer, E.A. Meulenkamp, S.H.P.M. De Winter, A.J.G. Mank, H.J.M. Vorstenbosch, C.H.L. Weijtens, V. Van Elsbergen, Phys. Status Solid Appl. Res. 201, 1342 (2004)

    Article  ADS  Google Scholar 

  39. A. M. Nardes, M. Kemerink, R. A. J. Janssen, Phys. Rev. B Condens. Matter Mater. Phys. 76, 1 (2007)

  40. C. Perlov, W. Jackson, C. Taussig, S. Mo, S. R. For. 426, 2 (2003)

    Google Scholar 

  41. S. Vempati, S. Chirakkara, J. Mitra, P. Dawson, K.K. Nanda, S.B. Krupanidhi, Appl. Phys. Lett. 100, 162104 (2012)

    Article  ADS  Google Scholar 

  42. J.H. Lin, J.J. Zeng, Y.C. Su, Y.J. Lin, Appl. Phys. Lett. 100, 201902 (2012)

    Article  ADS  Google Scholar 

  43. L. Xie, L. Guo, W. Yu, T. Kang, R.K. Zheng, K. Zhang, Nanotechnology 29, 464002 (2018)

    Article  ADS  Google Scholar 

  44. X. Wang, D. Pan, M. Sun, F. Lyu, J. Zhao, Q. Chen, A.C.S. Appl, Mater. Interfaces 13, 26187 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author Arjun K thanks the MHRD, Government of India, for funding to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Karthikeyan.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We conform that, this manuscript is not currently being considered for publication in another journal. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process. He is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjun, K., Karthikeyan, B. Flexible ultraviolet photodetector based on flower-like ZnO/PEDOT:PSS nanocomposites. Appl. Phys. A 128, 449 (2022). https://doi.org/10.1007/s00339-022-05516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05516-x

Keywords

Navigation