Skip to main content
Log in

Tunable Microwave Absorbing Properties of CoFe2O4/PANI Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The design of CoFe2O4/PANI interfaces can significantly enhance a material's dielectric loss ability at high frequency. This paper presents a simple method to generate CoFe2O4/PANI interfaces to enhance microwave absorption and attenuation at high frequency. Cobalt ferrite nanoparticles were mixed with PANI at various wt.%. X-ray diffraction of nanocomposites indicates that the structure of the core material has a spinel structure and demonstrates the formation of CoFe2O4/PANI nanocomposites. The particle size of ferrite and polyaniline powders were measured using transmission electron microscopy. The particle size of CoFe2O4 is found to be 20 nm. The saturation magnetization (Ms) of all the nanocomposites were found to be decreasing with decrease of ferrite content, while coercivity (Hc) remained at the value corresponding to pure cobalt ferrite. Because the CoFe2O4/PANI interface induces a strong dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.9 mm. The complex permittivity (ε′ and ε″) and permeability (μ′ and μ″) were collected by a vector network analyser and the absorbing properties were calculated according to transmission theory. ε′, ε″ and μ″ increases with an increase of PANI, whereas μ′ decreases. The absorption peak shifted to the high-frequency side with PANI. These results showed that a wider absorption frequency range could be obtained by adding different polyaniline content in cobalt ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Praveena, S. Matteppanavar, H.-L. Liu, and K. Sadhana, J. Mater. Sci. Mater. Electron. 28, 4179 (2017).

    CAS  Google Scholar 

  2. K. Praveena, K. Sadhana, H.L. Liu, N. Maramu, and G. Himanandini, J. Alloys Compd. 681, 499 (2016).

    CAS  Google Scholar 

  3. C. Pan, K. Kou, Y. Zhang, Z. Li, and G. Wu, Compos. Part B-Eng. 153, 1 (2018).

    CAS  Google Scholar 

  4. P. Song, Z. Xu, Y. Wu, Q. Cheng, Q. Guo, and H. Wang, Carbon 111, 807 (2017).

    CAS  Google Scholar 

  5. J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, and Z.-Z. Yu, Adv. Mater. 29, 1702367 (2017).

    Google Scholar 

  6. P. Gairola, L.P. Purohita, S.P. Gairolab, P. Bhardwajb, and S. Kaushik, Prog. Nat. Sci. Mater. Int. 29, 170 (2019).

    CAS  Google Scholar 

  7. C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, and Z. Guo, Carbon 140, 696 (2018).

    CAS  Google Scholar 

  8. Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu, C. Luo, J. Kong, Q. Shao, N. Wang, Z. Guo, and X. Liu, Carbon 139, 1126 (2018).

    CAS  Google Scholar 

  9. H. Lv, H. Zhang, G. Ji, and Z.J. Xu, ACS Appl. Mater. Interfaces 8, 6529 (2016).

    CAS  Google Scholar 

  10. K. Praveena, K. Sadhana, S. Matteppanavar, and H.L. Liu, J. Magn. Magn. Mater. 423, 343 (2017).

    CAS  Google Scholar 

  11. K. Praveena, K. Sadhana, H.L. Liu, and S.R. Murthy, J. Mater. Sci. Mater. Electron. 27, 12680 (2016).

    CAS  Google Scholar 

  12. M. Fayzan Shakir, A. Tariq, Z.A. Rehan, Y. Nawab, I. Abdul Rashid, A. Afzal, U. Hamid, F. Raza, K. Zubair, M. Saad Rizwan, S. Riaz, A. Sultan, and M. Muttaqi, SN Appl. Sci. 2, 1 (2020).

    Google Scholar 

  13. C. Oueiny, S. Berlioz, and F.-X. Perrin, Prog. Polym. Sci. 39, 707 (2014).

    CAS  Google Scholar 

  14. X. Xiaojiang, F. Qiangang, G. Hongbo, Y. Guo, H. Zhou, J. Zhang, D. Pan, W. Shide, M. Dong, and Z. Guo, Polymer 188, 122129 (2020).

    Google Scholar 

  15. A. Mohamed Azharudeen, R. Karthiga, M. Rajarajan, and A. Suganthi, Arab. J. Chem. 13, 4053 (2020).

    Google Scholar 

  16. H. Hosseini, A. Zirakjou, V. Goodarzi, S. Mohammad Mousavi, H. AliKhonakdar, and S. Zamanlui, Int. J. Biol. Macromol. 152, 57 (2020).

    CAS  Google Scholar 

  17. H. Wei, H. Gu, J. Guo, D. Cui, X. Yan, J. Liu, D. Cao, X. Wang, S. Wei, and Z. Guo, Adv. Compos. Hybrid Mater. 1, 127 (2018).

    CAS  Google Scholar 

  18. B. Saravanakumar, G. Ravi, R.K. Guduru, and R. Yuvakkumar, J. Sol-Gel Sci. Technol. 94, 241 (2020).

    CAS  Google Scholar 

  19. A.I. Gopalan, S. Komathi, N. Muthuchamy, K.P. Lee, M.J. Whitcombe, L. Dhana, and G. Sai-Anand, Prog. Polym. Sci. 88, 1 (2019).

    Google Scholar 

  20. W. Zhang, X. Zhang, Z. Wu, K. Abdurahman, Y. Cao, H. Duan, and D. Jia, Compos. Sci. Technol. 188, 107966 (2019).

    Google Scholar 

  21. H. Gu, H. Zhang, J. Lin, Q. Shao, D.P. Young, L. Sun, T.D. Shen, and Z. Guo, Polymer 143, 324 (2018).

    CAS  Google Scholar 

  22. M. Saini, R. Shukla, and S.K. Singh, J. Inorg. Organomet. Polym. Mater. 29, 2044 (2019).

    CAS  Google Scholar 

  23. M. Saini, R. Shukla, and A. Kumar, J. Magn. Magn. Mater. 491, 165549 (2019).

    CAS  Google Scholar 

  24. H. Qiu, X. Luo, J. Wang, X. Zhong, and S. Qi, J. Electron. Mater. 48, 4400 (2019).

    CAS  Google Scholar 

  25. C. Yang, J. Jiang, X. Liu, C. Yin, and C. Deng, J. Magn. Magn. Mater. 404, 45 (2016).

    CAS  Google Scholar 

  26. M. Wang, G. Ji, B. Zhang, D. Tang, Y. Yang, and D. Youwei, J. Magn. Magn. Mater. 377, 52 (2015).

    CAS  Google Scholar 

  27. S.P. Gairola, V. Verma, L. Kumar, M. Abdullah Dar, S. Annapoorni, and R.K. Kotnala, Synth. Met. 160, 2315 (2010).

    CAS  Google Scholar 

  28. H. Yang, T. Ye, and Y. Lin, RSC Adv. 5, 103488 (2015).

    CAS  Google Scholar 

  29. S.H. Hosseini, S.H. Mohseni, A. Asadnia, and H. Kerdari, J Alloys Compd. 509, 4682 (2011).

    CAS  Google Scholar 

  30. T.H. Ting, R.P. Yu, and Y.N. Jau, Mater. Chem. Phys. 126, 364 (2011).

    CAS  Google Scholar 

  31. C. Wang, Y. Shen, X. Wang, H. Zhang, and A. Xie, Mater. Sci. Semicond. Proc. 16, 77 (2013).

    CAS  Google Scholar 

  32. A. Muñoz-Bonilla, J. Sánchez-Marcos, and P. Herrasti, Conducting Polymer HybridsSpringer Series on Polymer and Composite Materials, (Cham: Springer, 2017), p. 45.

    Google Scholar 

  33. R.T. Ma, H.T. Zhao, and G. Zhang, Mater. Res. Bull. 45, 1064 (2010).

    CAS  Google Scholar 

  34. J.M.A. Sulaiman, M.M. Ismail, S.N. Rafeeq, and A. Mandal, Appl. Phys. A 126, 236 (2020).

    CAS  Google Scholar 

  35. H.K. Choudhary, R. Kumar, S.P. Pawar, S. Bose, and B. Sahoo, J. Electron. Mater. 49, 1618 (2020).

    CAS  Google Scholar 

  36. Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao, C. Liang, H. Qiu, J. Kong, and G. Junwei, Compos. Sci. Technol. 183, 107833 (2019).

    CAS  Google Scholar 

  37. X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, and G. Junwei, Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020).

    Google Scholar 

  38. P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang, J. Zhang, J. Kong, and J. Gu, Sustain. Mater. Technol. (2020). https://doi.org/10.1016/j.susmat.2020.e00153.

    Article  Google Scholar 

  39. T. Pan, Y. Zhang, C. Wang, H.G.B. Wen, and B. Yao, Compos. Sci. Technol. 188, 107991 (2020).

    CAS  Google Scholar 

  40. X. Yang, X. Wang, and Z. Zhang, J. Cryst. Growth 277, 467 (2005).

    CAS  Google Scholar 

  41. K. Sadhana, K. Praveena, and S.R. Murthy, Mod. Phys. Lett. B 24, 369 (2010).

    CAS  Google Scholar 

  42. K. Sadhana, R. Sandhya, S.R. Murthy, and K. Praveena, Mater. Focus 3, 291 (2014).

    CAS  Google Scholar 

  43. K. Praveena, K. Sadhana, and S.R. Murthy, Integr. Ferroelectr. 119, 122 (2010).

    CAS  Google Scholar 

  44. S.R. Naik, A.V. Salker, and J. Mater, Chem. 22, 2740 (2012).

    CAS  Google Scholar 

  45. M. Artus, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.-M. Grenèche, S. Ammar, and F. Fiévet, J. Phys. Condens. Matter. 23, 506001 (2011).

    Google Scholar 

  46. M. Khandekar, R. Kambale, J. Patil, Y. Kolekar, and S. Suryavanshi, J. Alloys Compd. 509, 1861 (2011).

    CAS  Google Scholar 

  47. A.H. Lu, E.L. Salabas, and F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007).

    CAS  Google Scholar 

  48. E. Manova, B. Kunev, D. Paneva, I. Mitov, and L. Petrov, Chem. Mater. 16, 5689 (2004).

    CAS  Google Scholar 

  49. K. Praveena and S. Srinath, J. Nanosci. Nanotechnol. 14, 4371 (2014).

    CAS  Google Scholar 

  50. W.B. Weir, Proc. IEEE 62, 33 (1974).

    Google Scholar 

  51. A.M. Nicolson and G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

    Google Scholar 

  52. S.B. Wilson, IEEE Trans. Microw. Theory Technol. 36, 752 (1988).

    Google Scholar 

  53. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V.M. Primiani, and F. Moglie, IEEE Trans. Microw. Theory Technol. 59, 2633 (2011).

    CAS  Google Scholar 

  54. D. Micheli, A. Vricella, R. Pastore, and M. Marchetti, Carbon 77, 756 (2014).

    CAS  Google Scholar 

  55. K.H. Wu, Y.M. Shin, C.C. Yang, W.D. Ho, and J.S. Hsu, J. Poly. Sci. Part A Polym. Chem. 44, 2657 (2006).

    CAS  Google Scholar 

  56. N. Gandhi, K. Singh, A. Ohlan, D.P. Singh, and S.K. Dhawan, Compos. Sci. Technol. 71, 1754 (2011).

    CAS  Google Scholar 

  57. L. Li, H. Qiu, H. Qian, B. Hao, and X. Liang, J. Phys. Chem. C 114, 6712 (2010).

    CAS  Google Scholar 

  58. W. Wang, S.P. Gumfekar, Q. Jiao, and B. Zhao, J. Mater. Chem. C. 1, 2851 (2013).

    CAS  Google Scholar 

  59. S.M. Abbas, A.K. Dixit, R. Chatterjee, and T.C. Goel, J. Magn. Magn. Mater. 309, 20 (2007).

    CAS  Google Scholar 

  60. A. Ameli, S. Wang, Y. Kazemi, C.B. Park, and P. Pötschke, Nano Energy 15, 54 (2015).

    CAS  Google Scholar 

  61. J.Y. Kim, T. Kim, J.W. Suk, H. Chou, J.H. Jang, J.H. Lee, I.N. Kholmanov, D. Akinwande, and R.S. Ruoff, Small 10, 3405 (2014).

    CAS  Google Scholar 

  62. L.F. Malmonge, G.A. Lopes, S.D.C. Langiano, J.A. Malmonge, J.M.M. Cordeiro, and L.H.C. Mattoso, Eur. Polym. J. 42, 3108 (2006).

    CAS  Google Scholar 

  63. S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee, and T.C. Goel, Compos. A 37, 2148 (2006).

    Google Scholar 

  64. V. Truong, S.Z. Riddell, and R.F. Muscat, J. Mater. Sci. 3, 4974 (1998).

    Google Scholar 

  65. Z. Sun, F. Su, W. Forsling, and P. Samskog, J. Colloid Interface Sci. 197, 155 (1998).

    Google Scholar 

  66. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, and G. Kordas, J. Magn. Magn. Mater. 246, 360 (2002).

    CAS  Google Scholar 

  67. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, and L.B. Kong, J. Alloys Compd. 701, 841 (2017).

    CAS  Google Scholar 

  68. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L.B. Kong, J. Mater. Chem. C 4, 9738 (2016).

    CAS  Google Scholar 

  69. L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, W. Hong-Yuan, and Z.-M. Li, ACS Appl. Mater. Interfaces 10, 11941 (2018).

    CAS  Google Scholar 

  70. L. Wang, L. Chen, P. Song, C. Liang, L. Yuanjin, H. Qiu, Y. Zhang, J. Kong, and G. Junwei, Compos. Part B Eng. 171, 111 (2019).

    CAS  Google Scholar 

  71. L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan, and Yu Zhong-Zhen, ACS Adv. Funct. Mater. 29, 1905197 (2019).

    CAS  Google Scholar 

  72. P. Song, C. Liang, L. Wang, H. Qiu, G. Hongbo, J. Kong, and G. Junwei, Compos. Sci. Technnol. 181, 107698 (2019).

    Google Scholar 

  73. Z. Shen and J. Feng, ACS Sustain. Chem. Eng. 7, 6259 (2019).

    CAS  Google Scholar 

  74. C. Liang, P. Song, A. Ma, X. Shi, G. Hongbo, L. Wang, H. Qiu, J. Kong, and G. Junwei, Compos. Sci. Technol. 181, 107683 (2019).

    Google Scholar 

  75. L. Wang, H. Qiu, P. Song, Y. Zhang, L. Yuanjin, C. Liang, J. Kong, L. Chen, and G. Junwei, Compos. Part A Appl. Sci. Manuf. 123, 293 (2019).

    CAS  Google Scholar 

  76. I.Y. Sakharov, I.V. Ouporov, A.K. Vorobiev, M.G. Roig, and O.Y. Pletjushkina, Synth. Met. 142, 127 (2004).

    CAS  Google Scholar 

  77. H.K. Liu, C.C. Shih, G.P. Wang, T.R. Wu, K.H. Wu, and T.C. Chang, Synth. Met. 151, 256 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Praveena.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, K., Bououdina, M. Tunable Microwave Absorbing Properties of CoFe2O4/PANI Nanocomposites. J. Electron. Mater. 49, 6187–6198 (2020). https://doi.org/10.1007/s11664-020-08352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08352-y

Keywords

Navigation