Skip to main content
Log in

Impedance Spectroscopy and Photovoltaic Effect of Oxygen Defect Engineering on KNbO3 Ferroelectric Semiconductors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Perovskite-oxide (1 − x)KNbO3-xBaCo1/2Nb1/2O3−δ (KN-BCN; x = 0.00–0.20) ferroelectric semiconductor ceramics with oxygen defects are successfully prepared via a conventional solid-state sintering method. X-ray diffraction data indicate that the crystal symmetry evolves from orthogonal to tetragonal at increasing x values. Raman spectroscopic analysis confirms the long-range polarization of all compositions. X-ray photoelectron spectroscopy shows that the detailed chemical formula of 0.90KN-0.10BCN ceramics is 0.90KNbO3-0.10BaCo1/2Nb1/2O2.90. Room-temperature ferroelectricity weakens when the x value increases. The optical band gap narrows from 3.25 eV for x = 0.00 to 1.57 eV for x = 0.20, and the minimum value of ∼ 1.28 eV occurs in the 0.90KN-0.10BCN ceramic. Impedance analysis illustrates that the conduction mechanism of grains is mainly internal electron conduction, and that of the grain boundary is intrinsic conduction. The conducting mechanism of the ceramic system follows ohmic behavior by log I–log U curves. The maximum short-circuit photocurrent density and open-circuit photovoltage are 6.68 nA cm−2 and 0.80 V, and stable output is maintained. The KN-BCN ceramic system can be used in photovoltaic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H. Yang, M.D. Rossell, P. Yu, Y.-H. Chu, J.F. Scott, and J.W. Ager, Nat. Nanotechnol. 5, 143 (2010).

    CAS  Google Scholar 

  2. M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).

    Google Scholar 

  3. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr, and H.N. Lee, Nat. Commun. 3, 689 (2012).

    Google Scholar 

  4. J. Kreisel, M. Alexe, and P.A. Thomas, Nat. Mater. 11, 260 (2012).

    CAS  Google Scholar 

  5. B. Song, X. Wang, C. Xin, L. Zhang, B. Song, Y. Zhang, Y. Wang, J. Wang, Z. Liu, and Y. Sui, J. Alloys Compd. 703, 67 (2017).

    CAS  Google Scholar 

  6. S.M. Young and A.M. Rappe, Phys. Rev. Lett. 109, 116601 (2012).

    Google Scholar 

  7. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, and U.V. Waghmare, Cheminform 299, 1719 (2003).

    CAS  Google Scholar 

  8. S. Yang, G.B. Ma, L. Xu, C.Y. Deng, and X. Wang, RSC Adv. 9, 29238 (2019).

    CAS  Google Scholar 

  9. Q. Hang, W. Zhou, X. Zhu, J. Zhu, Z.G. Liu, and T. Al-Kassab, J. Adv. Ceram. 2, 252 (2013).

    CAS  Google Scholar 

  10. J. Wu, Springer 7, 379 (2018).

    Google Scholar 

  11. C.H. Nam, H.-Y. Park, I.-T. Seo, J.-H. Choi, S. Nahm, and H.-G. Lee, J. Alloys Compd. 509, 3686 (2011).

    CAS  Google Scholar 

  12. B. Sahoo and P.K. Panda, J. Adv. Ceram. 2, 37 (2013).

    CAS  Google Scholar 

  13. M. Okayasu and K. Watanabe, J. Adv. Ceram. 5, 35 (2016).

    CAS  Google Scholar 

  14. G. Ilya, W.D. Vincent, T. Maria, G. Gaoyang, D.M. Stein, W. Liyan, C. Guannan, E.M. Gallo, A.R. Akbashev, and P.K. Davies, Nature 503, 509 (2013).

    Google Scholar 

  15. C.G. Duan, W.N. Mei, J.J. Liu, J.R. Hardy, M.J. Bai, and S. Ducharme, J. Phys. Condens. Matter 13, 8189 (2001).

    CAS  Google Scholar 

  16. X. Lv, Z. Li, J. Wu, D. Xiao, and J. Zhu, ACS Appl. Mater. Interfaces 44, 30304 (2016).

    Google Scholar 

  17. C. Pascualgonzalez, G. Schileo, and A. Feteira, Phys. Rev. Lett. 109, 495902 (2016).

    Google Scholar 

  18. F. Wang, I. Grinberg, and A.M. Rappe, Phys. Rev. B 89, 5105 (2014).

    Google Scholar 

  19. Y. Jiang, Z. Zou, and J. Ye, J. Mater. Sci. 41, 1131 (2006).

    Google Scholar 

  20. M.A. Mohiddon and K.L. Yadav, J. Phys. D Appl. Phys. 40, 7540 (2007).

    CAS  Google Scholar 

  21. T. Zhang, K. Zhao, J. Yu, J. Jin, Y. Qi, H. Li, X. Hou, and G. Liu, Nanoscale 5, 8375 (2013).

    CAS  Google Scholar 

  22. A.M. Quittet, M.I. Bell, M. Krauzman, and P.M. Raccah, Phys. Rev. B 14, 5068 (1976).

    CAS  Google Scholar 

  23. A. Bartasyte, J. Kreisel, W. Peng, and M. Guillouxviry, Appl. Phys. Lett. 96, 633 (2010).

    Google Scholar 

  24. J.A. Baier-Saip, E. Ramos-Moor, and A.L. Cabrera, Solid State Commun. 135, 367 (2005).

    CAS  Google Scholar 

  25. V.V. Atuchin, I.E. Kalabin, V.G. Kesler, and N.V. Pervukhina, J. Electron. Spectrosc. 142, 129 (2005).

    CAS  Google Scholar 

  26. R. Sawyer, H.W. Nesbitt, and R.A. Secco, J. Non-Cryst. Solids. 358, 290 (2012).

    CAS  Google Scholar 

  27. V.V. Atuchin, V.G. Kesler, N.Y. Maklakova, L.D. Pokrovsky, and V.N. Semenenko, Surf. Interface Anal. 34, 320 (2002).

    CAS  Google Scholar 

  28. B.J. Tan, K.J. Klabunde, and P.M.A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).

    CAS  Google Scholar 

  29. V.V. Atuchin, V.G. Kesler, V.K. Sapozhnikov, and V.N. Yakovenchuk, Mater. Charact. 59, 1329 (2008).

    CAS  Google Scholar 

  30. V.V. Atuchin, J.C. Grivel, A.S. Korotkov, and Z. Zhang, J. Solid State Chem. 181, 1285 (2008).

    CAS  Google Scholar 

  31. P. Pertosa and F.M. Michel-Calendini, Phys. Rev. B. 17, 2011 (1978).

    CAS  Google Scholar 

  32. T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. McDonald, and P.G. Smirniotis, J. Catal. 325, 145 (2015).

    CAS  Google Scholar 

  33. G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky, Phys. Rev. 93, 672 (1954).

    CAS  Google Scholar 

  34. Q. Wei, Z. Wang, X. Li, X. Long, and Z.G. Ye, Chem. Mater. 21, 506 (2009).

    CAS  Google Scholar 

  35. C. Long, C. Qi, W. Yun, W. He, Y. Li, and H. Fan, J. Mater. Chem. C 3, 8852 (2015).

    CAS  Google Scholar 

  36. W. Zhou, H. Deng, P. Yang, and J. Chu, Appl. Phys. Lett. 105, 134 (2014).

    Google Scholar 

  37. N. Masó and A.R. West, Chem. Mater. 27, 1552 (2015).

    Google Scholar 

  38. J. Wu, J. Wang, D. Xiao, and J. Zhu, J. Appl. Phys. 110, 064104 (2011).

    Google Scholar 

  39. T. He, K.D. Kreuer, Y.M. Baikov, and J. Maier, Solid State Ionics 95, 301 (1997).

    CAS  Google Scholar 

  40. A. Kazakopoulos, C. Sarafidis, K. Chrissafis, and O. Kalogirou, Solid State Ionics 179, 1980 (2008).

    CAS  Google Scholar 

  41. L. Ming, M.J. Pietrowski, R.A. De Souza, Z. Huairuo, I.M. Reaney, S.N. Cook, J.A. Kilner, and D.C. Sinclair, Nat. Mater. 13, 31 (2014).

    Google Scholar 

  42. Y. Sun, H. Liu, H. Hao, L. Zhang, and S. Zhang, Ceram. Int. 41, 931 (2015).

    CAS  Google Scholar 

  43. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, and A. Turut, Mater. Sci. Semicond. Proc. 109, 104923 (2020).

    CAS  Google Scholar 

  44. M. Prades, H. Beltrán, E. Cordoncillo, P.J. Alonso, N. Masó, and A.R. West, Phys. Status Solidi 209, 2267 (2012).

    CAS  Google Scholar 

  45. D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, and W.Q. Zhang, Phys. Rev. B 73, 245427 (2006).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11464006) and Guangxi Key Laboratory of Information Materials (Grant No. 191026–Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changlai Yuan, Baohua Zhu or Guanghui Rao.

Ethics declarations

Conflict of interest

The authors confirm that this manuscript is their original work, and the article was written by the stated authors, who are all aware of its content and approve its submission. The article has not been published previously and is not under consideration for publication elsewhere. No conflict of interest exists. The article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Zhang, Y., Yuan, C. et al. Impedance Spectroscopy and Photovoltaic Effect of Oxygen Defect Engineering on KNbO3 Ferroelectric Semiconductors. J. Electron. Mater. 49, 6165–6174 (2020). https://doi.org/10.1007/s11664-020-08334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08334-0

Keywords

Navigation