Skip to main content
Log in

Electronic and Transport Properties of Sn-Doped Sb2Te3: A Hybrid Functional Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic and transport properties of Sn-doped Sb2Te3 have been investigated by using the Heyd–Scuseria–Ernzerhof hybrid functional with spin orbit coupling. Results show that Sn preferentially substitute Sb to induce the p-type characteristics in Sb2Te3. Detailed thermodynamic examinations have been conducted to elaborate the favorability for Sn to act as a shallow acceptor in Sb2Te3. Extensive calculations of transport properties reveal that Sn doping gives rise to remarkable enhancements in hole mobility, electrical conductivity, Seebeck coefficient and power factor of Sb2Te3, thus significantly improving the thermoelectric performance. The present work offers a valuable insight on how Sn doping strongly influences the electronic and transport properties of Sb2Te3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ulutas, D. Deger, and S. Yakut, J. Phys. Conf. Ser. 417, 012040 (2013).

    Article  CAS  Google Scholar 

  2. X. Li, Z. Sun, Z. Song, F. Rao, L. Wu, and W. Liu, Solid State Sci. 13, 131 (2011).

    Article  CAS  Google Scholar 

  3. B. Jariwala and D.V. Shah, J. Cryst. Growth 318, 1179 (2011).

    Article  CAS  Google Scholar 

  4. R. Zhang, C. Wang, J. Li, W. Su, J. Zhang, M. Zhao, J. Liu, Y. Zhang, and L. Mei, Solid State Sci. 12, 1168 (2010).

    Article  CAS  Google Scholar 

  5. I.Y. Erdogan and U. Demir, J. Electroanal. Chem. 633, 253 (2009).

    Article  CAS  Google Scholar 

  6. V.A. Kulbachinskii, H. Ozaki, Y. Miyahara, and K. Funagai, J. Exp. Theor. Phys. Lett. 97, 1212 (2003).

    Article  CAS  Google Scholar 

  7. G.A. Thomas, D.H. Rapkine, R.B. Van Dover, L.F. Mattheiss, W.A. Sunder, L.F. Schneemeyer, and J.V. Waszczak, Phys. Rev. B 46, 1553 (1992).

    Article  CAS  Google Scholar 

  8. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, and S.C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  CAS  Google Scholar 

  9. T. Thonhauser, G.S. Jeon, G.D. Mahan, and J.O. Sofo, Phys. Rev. B 68, 205207 (2003).

    Article  CAS  Google Scholar 

  10. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  11. D.M. Rowe, eds., Thermoelectrics Handbook: Macro to Nano (New York: CRC Press, 2006).

    Google Scholar 

  12. D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Google Scholar 

  13. H.J. Goldsmid, Thermoelectric Refrigeration (New York: Plenum Press, 1964).

    Book  Google Scholar 

  14. T.M. Tritt, eds., Semiconductors and Semimetals (San Diego: Academic Press, 2001).

    Google Scholar 

  15. X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan, J. Phys. D Appl. Phys. 39, 740 (2006).

    Article  CAS  Google Scholar 

  16. D. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Boston: Kluwer Academic, 1994).

    Book  Google Scholar 

  17. H.Y. Lv, H.J. Liu, L. Pan, Y.W. Wen, X.J. Tan, J. Shi, and X.F. Tang, Appl. Phys. Lett. 96, 142101 (2010).

    Article  CAS  Google Scholar 

  18. J.L. Cui, H.F. Xue, W.J. Xiu, L.D. Mao, P.Z. Ying, and L. Jiang, J. Alloys Compd. 460, 426 (2008).

    Article  CAS  Google Scholar 

  19. J.L. Cui, H.F. Xue, and W.J. Xiu, Intermetallics 15, 1466 (2007).

    Article  CAS  Google Scholar 

  20. C. Drasar, A. Hovorkova, P. Lostak, H. Kong, C.P. Li, and C. Uher, J. Appl. Phys. 104, 023701 (2008).

    Article  CAS  Google Scholar 

  21. I.V. Gasenkova, L.D. Ivanova, and Y.V. Granatkina, Inorg. Mater. 37, 1112 (2001).

    Article  CAS  Google Scholar 

  22. L.D. Ivanova, Y.V. Granatkina, and Y.A. Sidorov, Neorg. Mater. 34, 34 (1998).

    Google Scholar 

  23. P.N. Sherov, E.I. Shvedkov, and N.V. Timofeeva, Neorg. Mater. 26, 275 (1990).

    CAS  Google Scholar 

  24. J. Horak, P. Lostak, and M. Matyas, Phys. Status Solidi B 129, 381 (1985).

    Article  CAS  Google Scholar 

  25. I.V. Gasenkova, M.K. Zhitinskaya, S.A. Nemov, and T.E. Svechnikova, Phys. Solid State 41, 1805 (1999).

    Article  CAS  Google Scholar 

  26. I.V. Gasenkova, M.K. Zhitinskaya, S.A. Nemov, and L.D. Ivanova, Phys. Solid State 44, 1766 (2002).

    Article  CAS  Google Scholar 

  27. Z. Li, C. Si, J. Zhou, H. Xu, and Z. Sun, A.C.S. Appl. Mater. Interfaces 8, 26126 (2016).

    Article  CAS  Google Scholar 

  28. B.Y. Yavorsky, N.F. Hinsche, I. Mertig, and P. Zahn, Phys. Rev. B 84, 165208 (2011).

    Article  CAS  Google Scholar 

  29. R.W.G. Wyckoff, Crystal Structures (New York: Wiley, 1964).

    Google Scholar 

  30. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  32. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  CAS  Google Scholar 

  33. S. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  35. D. West, Y.Y. Sun, H. Wang, J. Bang, and S.B. Zhang, Phys. Rev. B 86, 121201 (2012).

    Article  CAS  Google Scholar 

  36. I.V. Gasenkova, M.K. Zhitinskaya, S.A. Nemov, and L.D. Ivanova, Phys. Solid State 44, 1850 (2002).

    Article  CAS  Google Scholar 

  37. R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969).

    Article  CAS  Google Scholar 

  38. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  39. S.B. Zhang and J.E. Northrup, Phys. Rev. Lett. 67, 1067 (1991).

    Google Scholar 

  40. D.M. Rowe and C.M. Bhandari, J. Physique Lett. 46, L49 (1985).

    Article  Google Scholar 

  41. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  42. X. Gao, K. Uehara, D.D. Klug, S. Patchkovskii, J.S. Tse, and T.M. Tritt, Phys. Rev. B 72, 125202 (2005).

    Article  CAS  Google Scholar 

  43. J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Nanoscale 4, 4348 (2012).

    Article  CAS  Google Scholar 

  44. S. Zastrow, J. Gooth, T. Boehnert, S. Heiderich, W. Toellner, S. Heimann, S. Schulz, and K. Nielsch, Semicond. Sci. Technol. 28, 035010 (2013).

    Article  CAS  Google Scholar 

  45. W.H. Butler and G.M. Stocks, Phys. Rev. B 29, 4217 (1984).

    Article  CAS  Google Scholar 

  46. X. Zhang, Z. Zeng, C. Shen, Z. Zhang, Z. Wang, C. Lin, and Z. Hu, J. Appl. Phys. 115, 024307 (2014).

    Article  CAS  Google Scholar 

  47. Y.J. Chien, Z. Zhou, and C. Uher, J. Cryst. Growth 283, 309 (2005).

    Article  CAS  Google Scholar 

  48. V.A. Johnson and K. Lark-Horovitz, Phys. Rev. 92, 226 (1953).

    Article  CAS  Google Scholar 

  49. A.F. Gibson, eds., Progress in Semiconductors (New York: Wiley, 1956).

    Google Scholar 

  50. R.K. Willardson and A.C. Beer, eds., Semiconductors and Semimetals (New York: Academic Press, 1972).

    Google Scholar 

  51. Z. Zhou, M. Zabeik, P. Lostak, and C. Uher, J. Appl. Phys. 99, 043901 (2006).

    Article  CAS  Google Scholar 

  52. A.M. Adam, A. El-Khouly, A.P. Novitskii, E.M.M. Ibrahim, A.V. Kalugina, D.S. Pankratova, A.I. Taranova, A.A. Sakr, A.V. Trukhanov, M.M. Salem, and V. Khovaylo, J. Phys. Chem. Solids 138, 109262 (2020).

    Article  CAS  Google Scholar 

  53. D. Shi, R. Wang, G. Wang, C. Li, X. Shen, and Q. Nie, Vacuum 145, 347 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maamar Benkraouda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Amrane, N., Zhang, Z. et al. Electronic and Transport Properties of Sn-Doped Sb2Te3: A Hybrid Functional Study. J. Electron. Mater. 49, 4372–4378 (2020). https://doi.org/10.1007/s11664-020-08184-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08184-w

Keywords

Navigation