Skip to main content
Log in

Uniformity of Gate Dielectric for I/O and Core HK/MG pMOSFETs with Nitridation Treatments

  • International Electron Devices and Materials Symposium 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Uniformity consideration in integrated-circuit manufacturing is an impressive task, especially in the field of nano-node semiconductors. The use of high-dielectric-constant (high-K) materials to promote drive current in deep nano-node devices is also increasing. One solution involves enhancing the quality of the high-K dielectric layer as a gate dielectric with nitridation treatment. This study combines the aforementioned concerns in deep nano-node manufacturing and demonstrates their relationship. Given the electrical measurement of the wafers treated with decoupled plasma nitridation (DPN), a few desired key parameters, including drive current (IDS), threshold voltage (Vth), gate oxide capacitance per area (Cox), subthreshold swing (SS), and interface state density, in the design of p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) are observed. A uniformity comparison with different DPN processes is also performed, and the uniformity of the gate dielectric in input/output and core zones is discussed. Based on the uniformity distribution, lower SS values are obtained by adopting the low-temperature nitridation treatment after high-K dielectric deposition. The increased nitrogen concentration decreases the deviation, thereby indicating improved uniformity of SS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zheng, D. Connelly, F. Ding, and T.J. King Liu, IEEE Trans. Electron Devices 62, 3945 (2015).

    Article  CAS  Google Scholar 

  2. R. Singh, K. Aditya, S.S. Parihar, Y.S. Chauhan, R. Vega, T.B. Hook, and A. Dixit, IEEE Electron Device Lett. 39, 1246 (2018).

    Article  CAS  Google Scholar 

  3. Q. Cheng, K. Shariar, S. Khandelwal, and Y. Zeng, Solid State Electron. 158, 11 (2019).

    Article  CAS  Google Scholar 

  4. Z. Ramezani and A.A. Orouji, J. Electron. Mater. 46, 2269 (2017).

    Article  CAS  Google Scholar 

  5. K. Singh, S. Kumar, E. Goel, B. Singh, S. Dubey, and S. Jit, J. Electron. Mater. 45, 2184 (2016).

    Article  CAS  Google Scholar 

  6. T.T. Pham, M. Gutiérrez, C. Masante, N. Rouger, D. Eon, E. Gheeraert, D. Araùjo, and J. Pernot, Appl. Phys. Lett. 112, 102103 (2018).

    Article  Google Scholar 

  7. H.S. Momose, S.I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, IEEE Trans. Electron Devices 45, 691 (1998).

    Article  CAS  Google Scholar 

  8. B. Chen, R. Cheng, and Y. Zhao, IEEE Trans. Electron Devices 65, 5199 (2018).

    Article  CAS  Google Scholar 

  9. A.A. Orouji and M.J. Kumar, IEEE Trans. Device Mater. Reliab. 5, 509 (2005).

    Article  Google Scholar 

  10. X. Wang, S. Roy, A.R. Brown, and A. Asenov, IEEE Electron Device Lett. 32, 479 (2011).

    Article  CAS  Google Scholar 

  11. R.R. Righi, V.F. Rodrigues, C.A. Costa, G. Galante, L.C.E. Bona, and T. Ferreto, IEEE Trans. Cloud Comput. 4, 6 (2016).

    Article  Google Scholar 

  12. S. Ahn, J. Kim, E. Lim, and S. Kang, IEEE Access 6, 26493 (2018).

    Article  Google Scholar 

  13. A. Ueno, K. Tsujita, H. Kurita, Y. Iwata, M. Ghinovker, E. Kassel, and M. Adel, IEEE Trans. Semicond. Manuf. 17, 311 (2004).

    Article  Google Scholar 

  14. S.R.J. Brueck, Proc. IEEE 93, 1704 (2005).

    Article  CAS  Google Scholar 

  15. X. Ma, J. Xiang, L. Zhou, X. Wang, Y. Li, H. Yang, J. Zhang, C. Zhao, H. Yin, W. Wang, and T. Ye, J. Solid State Sci. Technol. 8, N100 (2019).

    Article  CAS  Google Scholar 

  16. D.I. Shahin, M.J. Tadjer, V.D. Wheeler, A.D. Koehler, T.J. Anderson, C.R. Eddy, and A. Christou, Appl. Phys. Lett. 112, 042107 (2018).

    Article  Google Scholar 

  17. X. Chen, H. Zhao, Y. Xiong, F. Wei, J. Du, Z. Tang, B. Tang, and J. Yan, J. Electron. Mater. 45, 4407 (2016).

    Article  CAS  Google Scholar 

  18. D.M. Ke, D. Wu, J. Meng, F. Yang, L.X. Wan, J.G. Yang, and H. Chang, Jpn. J. Appl. Phys. 57, 094201 (2018).

    Article  Google Scholar 

  19. R.M.B. Agaiby, S.H. Olsen, G. Eneman, E. Simoen, E. Augendre, and A.G. O’Neill, IEEE Electron Device Lett. 31, 419 (2010).

    Article  CAS  Google Scholar 

  20. J. Yuan and J.C.S. Woo, IEEE Electron Device Lett. 26, 87 (2005).

    Article  CAS  Google Scholar 

  21. H. Nam, C. Shin, and J.D. Park, IEEE Trans. Electron Devices 65, 4780 (2018).

    Article  CAS  Google Scholar 

  22. Y.A. Wahab, A. Fadzil, N. Soin, S. Fatmadiana, Z.Z. Chowdhury, N.A. Hamizi, O.A. Pivehzhani, T. Sabapathy, and Y. Al-Douri, J. Manuf. Proc. 38, 422 (2019).

    Article  Google Scholar 

  23. S. Khumpuang and S. Hara, IEEE Trans. Semicond. Manuf. 28, 393 (2015).

    Article  Google Scholar 

  24. W.D. Lee, M.C. Wang, S.J. Wang, C.W. Lian, and L.S. Huang, IEEE Trans. Plasma Sci. 42, 3703 (2014).

    Article  CAS  Google Scholar 

  25. H.H. Tseng, Y. Jeon, P. Abramowitz, T.Y. Luo, L. Hebert, J.J. Lee, J. Jiang, P.J. Tobin, G.C.F. Yeap, M. Moosa, J. Alvis, S.G.H. Anderson, N. Cave, T.C. Chua, A. Hegedus, G. Miner, J. Jeon, and A. Sultan, IEEE Electron Device Lett. 23, 704 (2002).

    Article  CAS  Google Scholar 

  26. T.J.J. Ho, D.S. Ang, L.J. Tang, T.W.H. Phua, and C.M. Ng, IEEE Electron Device Lett. 30, 772 (2009).

    Article  CAS  Google Scholar 

  27. J. Rozen, A.C. Ahyi, X. Zhu, J.R. Williams, and L.C. Feldman, IEEE Trans. Electron Devices 58, 3808 (2011).

    Article  CAS  Google Scholar 

  28. P. Mensch, K.E. Moselund, S. Karg, E. Lörtscher, M.T. Björk, and H. Riel, IEEE Trans. Nanotechnol. 12, 279 (2013).

    Article  CAS  Google Scholar 

  29. M. Turowski, A. Raman, and R.D. Schrimpf, IEEE Trans. Nucl. Sci. 51, 3166 (2004).

    Article  CAS  Google Scholar 

  30. A. Hokazono, S. Balasubramanian, K. Ishimaru, H. Ishiuchi, C. Hu, and T.J. King Liu, IEEE Electron Device Lett. 27, 605 (2006).

    Article  CAS  Google Scholar 

  31. J. Pan, C. Woo, M.V. Ngo, P. Besser, J. Pellerin, Q. Xiang, and M.R. Lin, IEEE Electron Device Lett. 24, 547 (2003).

    Article  CAS  Google Scholar 

  32. X. Wang, Q. Zeng, B. Liu, C. Gan, Q. Luo, Q. Yu, Y. Liu, K. Tan, and X. Ying, IEEE Trans. Electron Devices 61, 207 (2014).

    Article  CAS  Google Scholar 

  33. T. Ando, E.A. Cartier, J. Bruley, K. Choi, and V. Narayanan, IEEE Electron Device Lett. 34, 729 (2013).

    Article  CAS  Google Scholar 

  34. H. Xiao, Introduction to Semiconductor Manufacturing Technology, 2nd ed. (Washington: Spie, 2012).

    Book  Google Scholar 

  35. B.G. Streetman and S.K. Banerjee, Solid State Electronic Devices, 7th ed. (Upper Saddle River: Pearson, 2016).

    Google Scholar 

  36. S.J. Wang, M.C. Wang, W.D. Lee, J.M. Yang, L.S. Huang, and H.S. Huang, IEEE Trans. Plasma Sci. 42, 3712 (2014).

    Article  CAS  Google Scholar 

  37. C. Hu, Modern Semiconductor Devices for Integrated Circuits, 1st ed. (Upper Saddle River: Pearson, 2010).

    Google Scholar 

  38. T. Aichinger, G. Rescher, and G. Pobegen, Microelectronics Reliab. 80, 68 (2018).

    Article  CAS  Google Scholar 

  39. Y. Xu, G. Han, H. Liu, Y. Wang, Y. Liu, J. Ao, and Y. Hao, Nanoscale Res. Lett. 14, 126 (2019).

    Article  Google Scholar 

  40. H. Liu, G. Han, Y. Liu, and Y. Hao, Nanoscale Res. Lett. 14, 202 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The authors cordially thank United Microelectronics Corporation in Taiwan for providing valuable 12'' wafers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-How Lan or Mu-Chun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, CC., Shen, TS., Chen, JM. et al. Uniformity of Gate Dielectric for I/O and Core HK/MG pMOSFETs with Nitridation Treatments. J. Electron. Mater. 49, 6764–6775 (2020). https://doi.org/10.1007/s11664-020-08182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08182-y

Keywords

Navigation