Skip to main content

Advertisement

Log in

Theoretical Prediction of Enhanced Thermopower in n-Doped Si/Ge Superlattices Using Effective Mass Approximation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We analyze the cross-plane miniband transport in n-doped [001] silicon (Si)/germanium (Ge) superlattices using an effective mass approximation (EMA) approach that correctly accounts for the indirect nature of the Si and Ge band gaps. Direct-gap based EMA has been employed to investigate the electronic properties of these superlattices; however, that does not accurately predict transport properties. We use the Boltzmann transport equation framework in combination with the EMA band analysis, and predict that significant improvement in the thermopower (S) of n-doped Si/Ge superlattices can be achieved by controlling the lattice strain environment in these heterostructured materials. We illustrate that a remarkable degree of tunability in the Seebeck coefficient (S) can be attained by growing the superlattices on various substrates and/or varying the periods and the composition of the superlattices. Our calculations show up to \(\sim 3.2\)-fold Seebeck enhancement in Si/Ge [001] superlattices over bulk silicon in the high-doping regime, breaking the Pisarenko relation. And the thermopower modulations lead to an increase in the power factor, \(S^2\sigma \), by up to 20%, where \(\sigma \) is the electronic conductivity. Our approach is generally applicable to other superlattice systems, such as to investigate the electronic transport properties of two-dimensional nanowire and three-dimensional nanodot superlattices. A material with high S potentially improves the energy conversion efficiency of thermoelectric applications, and additionally is highly valuable in various Seebeck metrology techniques including thermal, flow, radiation, and chemical sensing applications. We anticipate that the ideas presented here will have a strong impact in controlling electronic transport in various thermoelectric, optoelectronic, and quantum-enhanced heterostructured materials applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Broido, T. Reinecke, Appl. Phys. Lett. 67, 100 (1995)

    Article  CAS  Google Scholar 

  2. Y.-M. Lin, M. Dresselhaus, Phys. Rev. B 68, 075304 (2003)

    Article  CAS  Google Scholar 

  3. A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, S. Reggiani, Phys. Rev. Lett. 84, 5912 (2000)

    Article  CAS  Google Scholar 

  4. L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970)

    Article  CAS  Google Scholar 

  5. T. Koga, X. Sun, S. Cronin, M. Dresselhaus, Appl. Phys. Lett. 75, 2438 (1999)

    Article  CAS  Google Scholar 

  6. D. Vashaee, A. Shakouri, J. Appl. Phys. 95, 1233 (2004)

    Article  CAS  Google Scholar 

  7. D. Vashaee, Y. Zhang, A. Shakouri, G. Zeng, Y.-J. Chiu, Phys. Rev. B 74, 195315 (2006)

    Article  CAS  Google Scholar 

  8. D. Vashaee, A. Shakouri, J. Appl. Phys. 101, 053719 (2007)

    Article  CAS  Google Scholar 

  9. J.-H. Bahk, R.B. Sadeghian, Z. Bian, A. Shakouri, J. Electron. Mater. 41, 1498 (2012)

    Article  CAS  Google Scholar 

  10. N. Hinsche, I. Mertig, P. Zahn, J. Phys. Condens. Matter 24, 275501 (2012)

    Article  CAS  Google Scholar 

  11. W.G. Van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002)

    Article  CAS  Google Scholar 

  12. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Mesoscopic Electron Transport (Springer, Berlin, 1997), pp. 105–210

    Book  Google Scholar 

  13. S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman et al., IEEE Trans. Electron Dev. 51, 1790 (2004)

    Article  CAS  Google Scholar 

  14. B.S. Meyerson, Sci. Am. 270, 62 (1994)

    Article  CAS  Google Scholar 

  15. S.J. Koester, J.D. Schaub, G. Dehlinger, J.O. Chu, IEEE J. Select. Top. Quant. Electron. 12, 1489 (2006)

    Article  CAS  Google Scholar 

  16. J. Liu, X. Sun, R. Camacho-Aguilera, L.C. Kimerling, J. Michel, Opt. Lett. 35, 679 (2010)

    Article  CAS  Google Scholar 

  17. B.-Y. Tsaur, C.K. Chen, S.A. Paul, Opt. Eng. 33, 72 (1994)

    Article  Google Scholar 

  18. T. Pearsall, Prog. Quant. Electron. 18, 97 (1994)

    Article  CAS  Google Scholar 

  19. J. Engvall, J. Olajos, H.G. Grimmeiss, H. Presting, H. Kibbel, E. Kasper, Appl. Phys. Lett. 63, 491 (1993)

    Article  CAS  Google Scholar 

  20. C. Boztug, J.R. Sánchez-Pérez, F. Cavallo, M.G. Lagally, R. Paiella, Acs Nano 8, 3136 (2014)

    Article  CAS  Google Scholar 

  21. J. Michel, J. Liu, L.C. Kimerling, Nat. Photon. 4, 527 (2010)

    Article  CAS  Google Scholar 

  22. J. Liu, L.C. Kimerling, J. Michel, Semicond. Sci. Technol. 27, 094006 (2012)

    Article  CAS  Google Scholar 

  23. G. Chen, M. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Int. Mater. Rev. 48, 45 (2003)

    Article  CAS  Google Scholar 

  24. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  CAS  Google Scholar 

  25. H. Alam, S. Ramakrishna, Nano Energy 2, 190 (2013)

    Article  CAS  Google Scholar 

  26. Z. Shi, C. Simmons, J. Prance, J. King Gamble, M. Friesen, D. Savage, M. Lagally, S. Coppersmith, M. Eriksson, Appl. Phys. Lett. 99, 233108 (2011)

    Article  CAS  Google Scholar 

  27. F.A. Zwanenburg, A.S. Dzurak, A. Morello, M.Y. Simmons, L.C. Hollenberg, G. Klimeck, S. Rogge, S.N. Coppersmith, M.A. Eriksson, Rev. Mod. Phys. 85, 961 (2013)

    Article  CAS  Google Scholar 

  28. R. Jansen, Nat. Mater. 11, 400 (2012)

    Article  CAS  Google Scholar 

  29. L.R. Schreiber, H. Bluhm, Science 359, 393 (2018)

    Article  CAS  Google Scholar 

  30. T. Kuan, S. Iyer, Appl. Phys. Lett. 59, 2242 (1991)

    Article  CAS  Google Scholar 

  31. T. David, J.-N. Aqua, K. Liu, L. Favre, A. Ronda, M. Abbarchi, J.-B. Claude, I. Berbezier, Sci. Rep. 8, 2891 (2018)

    Article  CAS  Google Scholar 

  32. C. Euaruksakul, M.M. Kelly, B. Yang, D.E. Savage, G.K. Celler, M.G. Lagally, J. Phys. D Appl. Phys. 47, 025305 (2013)

    Article  CAS  Google Scholar 

  33. M. Brehm, M. Grydlik, Nanotechnology 28, 392001 (2017)

    Article  CAS  Google Scholar 

  34. C. Lee, Y.-S. Yoo, B. Ki, M.-H. Jang, S.-H. Lim, H.G. Song, J.-H. Cho, J. Oh, Y.-H. Cho, Sci. Rep. 9, 1 (2019)

    Article  CAS  Google Scholar 

  35. S. Bathula, M. Jayasimhadri, N. Singh, A. Srivastava, J. Pulikkotil, A. Dhar, R. Budhani, Appl. Phys. Lett. 101, 213902 (2012)

    Article  CAS  Google Scholar 

  36. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus et al., Nano Lett. 8, 4670 (2008)

    Article  CAS  Google Scholar 

  37. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  CAS  Google Scholar 

  38. I.D. Noyan, G. Gadea, M. Salleras, M. Pacios, C. Calaza, A. Stranz, M. Dolcet, A. Morata, A. Tarancon, L. Fonseca, Nano Energy 57, 492 (2019)

    Article  CAS  Google Scholar 

  39. X. Mu, L. Wang, X. Yang, P. Zhang, A.C. To, T. Luo, Sci. Rep. 5, 16697 (2015)

    Article  CAS  Google Scholar 

  40. X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, G. Su, Phys. Rev. B 89, 054310 (2014)

    Article  CAS  Google Scholar 

  41. J. Reparaz, I.C. Marcus, A.R. Goñi, M. Garriga, M. Alonso, J. Appl. Phys. 112, 023512 (2012)

    Article  CAS  Google Scholar 

  42. J.A. Perez-Taborda, M.M. Rojo, J. Maiz, N. Neophytou, M. Martin-Gonzalez, Sci. Rep. 6, 32778 (2016)

    Article  CAS  Google Scholar 

  43. S. Hu, H. Zhang, S. Xiong, H. Zhang, H. Wang, Y. Chen, S. Volz, Y. Ni, Phys. Rev. B 100, 075432 (2019)

    Article  CAS  Google Scholar 

  44. G. Bastard, Phys. Rev. B 24, 5693 (1981)

    Article  CAS  Google Scholar 

  45. A. Van Herwaarden, P. Sarro, Sens. Actuat. 10, 321 (1986)

    Article  Google Scholar 

  46. F. Bakker, J. Flipse, B. Van Wees, J. Appl. Phys. 111, 084306 (2012)

    Article  CAS  Google Scholar 

  47. W. Trzeciakowski, Phys. Rev. B 38, 12493 (1988)

    Article  CAS  Google Scholar 

  48. F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies (Springer, Berlin, 2011)

    Book  Google Scholar 

  49. D. Mukherji, B. Nag, Phys. Rev. B 12, 4338 (1975)

    Article  CAS  Google Scholar 

  50. R. Zachai, K. Eberl, G. Abstreiter, E. Kasper, H. Kibbel, Phys. Rev. Lett. 64, 1055 (1990)

    Article  CAS  Google Scholar 

  51. V. Proshchenko, M. Settipalli, S. Neogi, Appl. Phys. Lett. 115(2019a)

    Article  CAS  Google Scholar 

  52. V.  Proshchenko, M.  Settipalli, A. K. Pimachev, and S.  Neogi, (2019b). arXiv:1907.03461

  53. P. Pereyra, EPL (Europhys. Lett.) 125, 27003 (2019)

    Article  CAS  Google Scholar 

  54. A. Valavanis, Z. Ikonić, R. Kelsall, Phys. Rev. B 75, 205332 (2007)

    Article  CAS  Google Scholar 

  55. N. Neophytou, H. Karamitaheri, H. Kosina, J. Comput. Electron. 12, 611 (2013)

    Article  CAS  Google Scholar 

  56. G. Fiedler, L. Nausner, Y. Hu, P. Chen, A. Rastelli, P. Kratzer, Phys. Status Solid 213, 524 (2016)

    Article  CAS  Google Scholar 

  57. N.W. Ashcroft, N.D. Mermin, Solid State Phys. (Saunders, Philadelphia, 1976)

    Google Scholar 

  58. V.  Semiconductor, The general properties of Si, Ge, SiGe, SiO2 and Si3N4 (2002). https://www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf

  59. C.G. Van de Walle, R.M. Martin, Phys. Rev. B 34, 5621 (1986)

    Article  Google Scholar 

  60. C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989)

    Article  Google Scholar 

  61. D.-Y. Ting, Y.-C. Chang, Phys. Rev. B 38, 3414 (1988)

    Article  CAS  Google Scholar 

  62. J.-C. Chiang, Jpn. J. Appl. Phys. 33, L294 (1994)

    Article  CAS  Google Scholar 

  63. M.M. Rieger, P. Vogl, Phys. Rev. B 48, 14276 (1993)

    Article  CAS  Google Scholar 

  64. D. Yu, Y. Zhang, F. Liu, Phys. Rev. B 78, 245204 (2008)

    Article  CAS  Google Scholar 

  65. S.K. Chun, K.L. Wang, I.E.E.E. Trans, Electron Dev. 39, 2153 (1992)

    Article  CAS  Google Scholar 

  66. G. Sun, Strain effects on hole mobility of silicon and germanium p-type metal-oxide-semiconductor field-effect-transistors 68, (2007)

  67. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  68. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  69. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  70. S. Satpathy, R.M. Martin, C.G. Van de Walle, Phys. Rev. B 38, 13237 (1988)

    Article  CAS  Google Scholar 

  71. M.S. Hybertsen, M. Schlüter, Phys. Rev. B 36, 9683 (1987)

    Article  CAS  Google Scholar 

  72. G. Mahan, J. Sofo, Proc. Natl. Acad. Sci. 93, 7436 (1996)

    Article  CAS  Google Scholar 

  73. J.-H. Bahk, Z. Bian, M. Zebarjadi, J.M. Zide, H. Lu, D. Xu, J.P. Feser, G. Zeng, A. Majumdar, A.C. Gossard et al., Phys. Rev. B 81, 235209 (2010)

    Article  CAS  Google Scholar 

  74. J.P. Perdew, Int. J. Quant. Chem. 30, 451 (1986)

    Article  Google Scholar 

  75. J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, J. Chem. Phys. 123, 174101 (2005)

    Article  CAS  Google Scholar 

  76. D. Lang, R. People, J. Bean, A. Sergent, Appl. Phys. Lett. 47, 1333 (1985)

    Article  Google Scholar 

  77. E. Kasper, H. Kibbel, H. Jorke, H. Brugger, E. Friess, G. Abstreiter, Phys. Rev. B 38, 3599 (1988)

    Article  CAS  Google Scholar 

  78. E. Kasper, H. Kibbel, H. Presting, Thin Solid Films 183, 87 (1989)

    Article  CAS  Google Scholar 

  79. E. Kasper, H. Herzog, H. Dambkes, G. Abstreiter, Mater. Res. Soc. Pittsburgh 56, 347 (1986)

    Article  CAS  Google Scholar 

  80. T. Pearsall, J. Bevk, L. Feldman, J. Bonar, J. Mannaerts, A. Ourmazd, Phys. Rev. Lett. 58, 729 (1987)

    Article  CAS  Google Scholar 

  81. T. Koga, S.B. Cronin, M.S. Dresselhaus, MRS Online Proc. Lib. Arch. 626, (2000)

  82. H. Böttner, G. Chen, R. Venkatasubramanian, MRS Bull. 31, 211 (2006)

    Article  Google Scholar 

  83. M. Prairie, R. Kolbas, Superlattices Microstruct. 7, 269 (1990)

    Article  Google Scholar 

  84. G.J. Snyder, E.S. Toberer, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, Singapore, 2011), pp. 101–110

    Google Scholar 

  85. G. Gupta, B. Rajasekharan, R.J. Hueting, I.E.E.E. Trans, Electron Dev. 64, 3044 (2017)

    Article  CAS  Google Scholar 

  86. P. Misra, Phys (Matter (Academic Press, Cambridge, Condens, 2011)

    Google Scholar 

  87. F. Le Vot, J.J. Meléndez, S.B. Yuste, Am. J. Phys. 84, 426 (2016)

    Article  Google Scholar 

  88. R. Pavelich, F. Marsiglio, Am. J. Phys. 83, 773 (2015)

    Article  Google Scholar 

  89. R. Pavelich, F. Marsiglio, Am. J. Phys. 84, 924 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is funded by the Defense Advanced Research Projects Agency (Defense Sciences Office) [Agreement No. HR0011-16-2-0043]. All computations were performed using the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Neogi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settipalli, M., Neogi, S. Theoretical Prediction of Enhanced Thermopower in n-Doped Si/Ge Superlattices Using Effective Mass Approximation. J. Electron. Mater. 49, 4431–4442 (2020). https://doi.org/10.1007/s11664-020-08136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08136-4

Keywords

Navigation