Skip to main content
Log in

On the Threshold Voltage and Performance of ZnO-Based Thin-Film Transistors with a ZrO2 Gate Dielectric

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the past few years, thin-film transistor (TFT) technology has experienced a rapid transition from amorphous silicon- (a-Si:H) and polysilicon-based TFTs to zinc oxide (ZnO)-based TFTs, and because of this transition, transparent TFTs have become a reality. In ZnO TFTs, which operate in accumulation mode, the threshold voltage has remained ambiguous due to the existence of grain boundary traps in the polycrystalline semiconducting channel. This paper provides an analytical relationship of threshold voltage with grain boundary trap density by assuming the grain boundary is a continuous one-dimensional line charge. A high density of grain boundary traps leads to a high threshold voltage. However, its effect can be minimized by employing a high-κ gate dielectric. In this work, we have demonstrated the reduction of threshold voltage in a ZnO TFT by using ZrO2 as a gate dielectric. A study of a ZnO/ZrO2 interface is reported by fabricating a metal–insulator–semiconductor capacitor structure. This interface is studied using capacitance–voltage (CV) and current–voltage (IV) characteristics. The ZnO TFT with a ZrO2 gate dielectric exhibits a low subthreshold slope (131 mV decade−1), low gate leakage current density (2.94 × 10−7 A cm−2) and low threshold voltage (1.2 V). However, it also exhibits a counterclockwise hysteresis of −1.4 V, which is attributed to the existence of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M.C. Fortunato, P.M.C. Barquinha, A.C. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, R.F.P. Martins, and L.M.N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).

    Article  CAS  Google Scholar 

  2. P.F. Carcia, R.S. McLean, and M.H. Reilly, Appl. Phys. Lett. 88, 30 (2006).

    Article  CAS  Google Scholar 

  3. J. Cai, D. Han, Y. Geng, W. Wang, L. Wang, S. Zhang, and Y. Wang, IEEE Trans. Electron Devices 60, 2432 (2013).

    Article  CAS  Google Scholar 

  4. S. Lee, S. Jeon, R. Chaji, and A. Nathan, Proc. IEEE 103, 644 (2015).

    Article  CAS  Google Scholar 

  5. J. Yang, S. Pi, Y. Han, R. Fu, T. Meng, and Q. Zhang, IEEE Trans. Electron Devices 63, 1904 (2016).

    Article  CAS  Google Scholar 

  6. S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, J. Appl. Phys. 80, 787 (1996).

    Article  CAS  Google Scholar 

  7. M.-S. Oh, R. Nirmala, and R. Navamathavan, J. Electron. Mater. 48, 3137 (2019).

    Article  CAS  Google Scholar 

  8. S. Lee and A. Nathan, Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  9. S. Lee, K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Jeon, C. Kim, I.-H. Song, and U.-I. Chung, Appl. Phys. Lett. 98, 203508 (2011).

    Article  CAS  Google Scholar 

  10. M.J. Powell, IEEE Trans. Electron Devices 36, 2753 (1989).

    Article  CAS  Google Scholar 

  11. K. Kandpal and N. Gupta, J. Mater. Sci. Mater. Electron. 27, 5972 (2016).

    Article  CAS  Google Scholar 

  12. M. Furuta, T. Kawaharamura, D. Wang, T. Toda, and T. Hirao, IEEE Electron Device Lett. 33, 851 (2012).

    Article  CAS  Google Scholar 

  13. C.-H. Wu, S.-J. Wang, H.-Y. Huang, K.-M. Chang, and H.-Y. Hsu, Electron. Lett. 50, 706 (2014).

    Article  CAS  Google Scholar 

  14. J.S. Lee, S. Chang, S.M. Koo, and S.Y. Lee, IEEE Electron Device Lett. 31, 225 (2010).

    Article  CAS  Google Scholar 

  15. D. Han, Y. Geng, J. Cai, W. Wang, L. Wang, Y. Tian, Y. Wang, and L. Liu, 2012 IEEE International Conference on Electron Devices Solid State Circuit 1 (2012).

  16. K. Kandpal and N. Gupta, Microelectron. Int. 35, 52 (2018).

    Article  Google Scholar 

  17. W.-S. Shin, H.-A. Ahn, J.-S. Na, S.-K. Hong, O.-K. Kwon, J.-H. Lee, J.G. Um, J. Jang, S.-H. Kim, and J.-S. Lee, IEEE Electron Device Lett. 3106, 1 (2017).

    Google Scholar 

  18. C.L. Lin and Y.C. Chen, IEEE Electron Device Lett. 28, 129 (2007).

    Article  CAS  Google Scholar 

  19. J.F. Conley, IEEE Trans. Device Mater. Reliab. 10, 460 (2010).

    Article  CAS  Google Scholar 

  20. E.N. Cho, J.H. Kang, C.E. Kim, P. Moon, and I. Yun, IEEE Trans. Device Mater. Reliab. 11, 112 (2011).

    Article  CAS  Google Scholar 

  21. T. Liu, L.E. Aygun, S. Wagner, and J.C. Sturm, IEEE Trans. Device Mater. Reliab. 16, 243 (2016).

    Article  CAS  Google Scholar 

  22. H. Aoki, IEEE Trans. Electron Devices 43, 31 (1996).

    Article  Google Scholar 

  23. C. Perumal, K. Ishida, R. Shabanpour, B.K. Boroujeni, L. Petti, N.S. Munzenrieder, G.A. Salvatore, C. Carta, G. Troster, and F. Ellinger, IEEE Electron Device Lett. 34, 1391 (2013).

    Article  CAS  Google Scholar 

  24. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981), pp. 122–129.

    Google Scholar 

  25. C.G.B. Garrett and W.H. Brattain, Phys. Rev. 99, 376 (1955).

    Article  Google Scholar 

  26. X. Cheng, S. Lee, G. Yao, and A. Nathan, J. Disp. Technol. 12, 898 (2016).

    Article  Google Scholar 

  27. S. Lee, D. Striakhilev, S. Jeon, and A. Nathan, IEEE Electron Device Lett. 35, 84 (2014).

    Article  CAS  Google Scholar 

  28. J.J. Siddiqui, J.D. Phillips, K. Leedy, and B. Bayraktaroglu, 69th Device Res. Conf. 2122, 75 (2011).

    Article  Google Scholar 

  29. B.J. Norris, J. Anderson, J.F. Wager, and D.A. Keszler, J. Phys. D Appl. Phys. 36, L105 (2003).

    Article  CAS  Google Scholar 

  30. S. Vyas, A.D.D. Dwivedi, and R.D. Dwivedi, Superlattices Microstruct. 120, 223 (2018).

    Article  CAS  Google Scholar 

  31. F.M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, and M. Kawasaki, J. Appl. Phys. 94, 7768 (2003).

    Article  CAS  Google Scholar 

  32. F.M. Hossain, J. Nishii, S. Takagi, T. Sugihara, A. Ohtomo, T. Fukumura, H. Koinuma, H. Ohno, and M. Kawasaki, Phys. E Low-Dimens. Syst. Nanostruct. 21, 911 (2004).

    Article  CAS  Google Scholar 

  33. F. Torricelli, J.R. Meijboom, E. Smits, A.K. Tripathi, M. Ferroni, S. Federici, G.H. Gelinck, L. Colalongo, Z.M. Kovacs-Vajna, D. De Leeuw, and E. Cantatore, IEEE Trans. Electron Devices 58, 2610 (2011).

    Article  CAS  Google Scholar 

  34. M. Wong, T. Chow, C.C. Wong, and D. Zhang, IEEE Trans. Electron Devices 55, 2148 (2008).

    Article  CAS  Google Scholar 

  35. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975).

    Article  CAS  Google Scholar 

  36. H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.K. Choi, J. Electrochem. Soc. 148, G114 (2001).

    Article  CAS  Google Scholar 

  37. H.S. Yang, D.P. Norton, S.J. Pearton, and F. Ren, Appl. Phys. Lett. 87, 212106 (2005).

    Article  CAS  Google Scholar 

  38. H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, Appl. Phys. Lett. 77, 1647 (2000).

    Article  CAS  Google Scholar 

  39. K. Kandpal and N. Gupta, J. Mater. Sci. Mater. Electron. 28, 16013 (2017).

    Article  CAS  Google Scholar 

  40. V.-L. Nguyen, M. Ohtaki, V.N. Ngo, M.-T. Cao, and M. Nogami, Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 25005 (2012).

    Article  CAS  Google Scholar 

  41. L.X. Qian, P.T. Lai, and W.M. Tang, Appl. Phys. Lett. 104, 1 (2014).

    Article  CAS  Google Scholar 

  42. T.-H. Cheng, S.-P. Chang, and S.-J. Chang, J. Electron. Mater. 47, 6923 (2018).

    Article  CAS  Google Scholar 

  43. J. Robertson and B. Falabretti, J. Appl. Phys. 100, 14111 (2006).

    Article  CAS  Google Scholar 

  44. A.M. Cowley and S.M. Sze, J. Appl. Phys. 36, 3212 (1965).

    Article  CAS  Google Scholar 

  45. E.H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).

    Article  CAS  Google Scholar 

  46. K. Kandpal and N. Gupta, J. Comput. Electron. 18, 1037 (2019).

    Article  CAS  Google Scholar 

  47. S.J. Lim, S.J. Kwon, H. Kim, and J.S. Park, Appl. Phys. Lett. 91, 2005 (2007).

    Google Scholar 

  48. L. Zhang, J. Li, X.W. Zhang, X.Y. Jiang, and Z.L. Zhang, Appl. Phys. Lett. 95, 072112 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Central Electronics Engineering Research Institute (CSIR-CEERI) Pilani, India, and Material Research Center MNIT Jaipur, India, for providing the experimental facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Kandpal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandpal, K., Gupta, N., Singh, J. et al. On the Threshold Voltage and Performance of ZnO-Based Thin-Film Transistors with a ZrO2 Gate Dielectric. J. Electron. Mater. 49, 3156–3164 (2020). https://doi.org/10.1007/s11664-020-08055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08055-4

Keywords

Navigation